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The process of invasion of tissue by cancer cells is crucial for metastasis – the for-
mation of secondary tumours – which is the main cause of mortality in patients with

cancer. In the invasion process itself, adhesion, both cell-cell and cell-matrix, plays an

extremely important role. In this paper a mathematical model of cancer cell invasion
of the extracellular matrix is developed by incorporating cell-cell adhesion as well as

cell-matrix adhesion into the model. Considering the interactions between cancer cells,

extracellular matrix and matrix degrading enzymes, the model consists of a system of
reaction-diffusion partial integro-differential equations, with non-local (integral) terms

describing the adhesive interactions between cancer cells and the host tissue, i.e. cell-cell
adhesion and cell-matrix adhesion. Having formulated the model, we prove the existence

and uniqueness of global in time classical solutions which are uniformly bounded. Then,

using computational simulations we investigate the effects of the relative importance
of cell-cell adhesion and cell-matrix adhesion on the invasion process. In particular we

examine the roles of cell-cell adhesion and cell-matrix adhesion in generating heteroge-

neous spatio-temporal solutions. Finally, in the discussion section, concluding remarks
are made and open problems are indicated.
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interactions; existence; uniqueness; boundedness of solutions; computational simulations.

AMS Subject Classification: 35A01, 35A02, 35A23, 35K55, 35K57, 35R09, 35Q92,

65M99, 65N40, 92–08, 92C17, 92C50

1. Introduction

The ability of cancer cells to invade adjacent tissue is a key process in the growth

of most cancers. This is a necessary step in the formation of metastases i.e. the

spread to distant, secondary locations, distinct from the primary mass. Indeed,

metastases (secondary tumours) are responsible for 90% of deaths due to cancer39.

Although both are highly complex processes, with their genetic and biochemical

control mechanisms still not fully understood, at the level of cells and tissues, the

two processes of invasion and metastasis are closely linked and have been classified

together as one of the so-called “hallmarks of cancer”21.

Cancer invasion consists of several important steps involving the interplay be-

tween the cells themselves and their microenvironment24: reduction in or loss of

cell-cell adhesion, enhanced cancer cell adhesion to the extracellular matrix, secre-

tion of matrix degrading enzymes leading to extracellular matrix degradation, and

the movement or migration of the cancer cells coupled with their proliferation. Cel-

lular adhesion is the binding of one cell to another cell or to a surface or matrix.

Cellular adhesion is regulated by specific cell-surface receptors and corresponding

adhesion molecules (also known as ligands or counter-receptors) that interact with

molecules on the opposing cell or surface. Cancer cells experience both adhesion

to themselves i.e. self-adhesion or cell-cell adhesion, and adhesion to components

of the extracellular matrix (e.g. collagen, fibronectin, vitronectin) i.e. cell-matrix

adhesion.

In general, cell movement through tissue may involve several different mecha-

nisms. However the two most important types of movement for invading cancer cells

are diffusion (no preferred direction) and directed motion, with the latter usualy

dominating. Directed movement of cancer cells through the extracellular matrix

(ECM) is possible due to the breakdown of ECM components, with the cancer cells

generally secreting the enzymes which degrade one or more of the ECM constitu-

tive proteins. Through a combination of proliferation and migration the cancer cells

then invade and spread into the ECM.

Excellent reviews of cancer growth and development in general and cancer in-

vasion and metastasis in particular can be found in the articles of Hanahan &

Weinberg21 and Friedl & Wolf16 respectively. A comprehensive description of can-

cer development, growth and spread may be found in the book of Weinberg44.

In the last 10-15 years or so, there has been an increasing interest shown in

the mathematical modelling of cancer invasion. Previous work in this area may be

found in the papers, 1, 2, 8, 10, 11, 17, 18, 23, 30, 31, 32, 38, 40, 41. Many of

these models examine the local spread of cancer cells using systems of partial dif-

ferential equations where the cancer cell migration is governed by diffusion, and the
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directed response of the cells to extracellular matrix (ECM) gradients, i.e. hapto-

taxis. The ECM gradients are created when the ECM is degraded by the matrix

degrading enzymes (MDEs) secreted by the cancer cells. As may be expected from

such reaction-diffusion-taxis systems, solutions involving an invading front of can-

cer cells arise and from these one can obtain an indication of the rate of invasion

of the cancer cells and the depth of penetration into the ECM. Some papers have

adopted a hybrid discrete-continuum approach enabling the tracking of individual

cancer cells1,2. Other papers have considered an individual-based modelling frame-

work and developed a multi-scale model33,34 enabling both intracellular dynamics

as well as cell-cell interactions to be modelled explicitly.

However, recent work by Gerisch & Chaplain19 and Sherratt et al.38 (following

the work of Armstrong et al.3) has considered a cancer cell-cell adhesion term in

a continuum model for the first time. These models formulated the problem using

non-local integral terms for both cell-cell and cell-matrix adhesion and the concepts

of adhesive flux and cell sensing radius. Being a generalization of reaction-diffusion-

taxis systems, these models exhibit qualitatively similar solutions of cancer cell

density profiles invading the ECM. However, the introduction of the cell-cell adhe-

sion term had the principal effect of slowing down the invasion rate of the cancer

cells. Indeed, for a given value of the cell-matrix adhesion parameter, it was possible

to show computationally that a large enough cell-cell adhesion parameter could be

chosen so as to localise the cancer and prevent invasion completely (a result also

obtained by Sherratt et al.38). For certain parameter values, Gerisch & Chaplain19

also found stationary heterogeneous solutions.

In this paper we adopt the approach of Gerisch & Chaplain19 and derive a

non-local, integro-differential PDE model of cancer invasion describing the spatio-

temporal dynamics of cancer cells, extracellular matrix and matrix degrading en-

zymes. The main aims of the paper are to provide some analytical results concerning

the nature of the solutions of such non-local PDE models and to examine compu-

tationally the roles of cell-cell and cell-matrix adhesion in some detail. The com-

puational simulation results show that a range of heterogeneous invasive behaviour

can be observed depending on the interplay between the two adhesion parameters,

cell-cell and cell-matrix. The structure of the paper is as follows. In the next section

we present our mathematical model and make some remarks concerning the non-

local terms. In section 4, we prove existence, uniqueness and boundedness of the

solutions to our system of equations and then in section 5 we undertake computa-

tional simulations of the model to investigate the solution behaviour for a range of

parameter values and to examine the relative effects of the key parameters of the

model. In the final section concluding remarks are made.
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2. The mathematical model

Our model consists of three dependent variables: cancer cell density, c, extracellu-

lar matrix density, v, and matrix degrading enzymes, m, and we derive a system

of (parabolic) reaction-diffusion-type equations governing the spatio-temporal evo-

lution of these variables. We note that other approaches to modelling such a sys-

tem are possible, including hyperbolic models14 and biomechanical models9. Indeed

adopting a biomechanical approach based on continuum mechanics may even lead

to a system of equations which are qualitatively different to that which we pro-

pose below29. Another alternative approach is to consider individual-based models,

which may also take into account the biomechanical properties of cells33,34.

We assume that the cancer cells migrate into the extracellular matrix through

a combination of diffusion and haptotaxis as well as undergoing proliferation. Al-

though it may be more accurate and closer to biological reality to consider non-

linear (degenerate) diffusion13,36,37,46, for simplicity we assume linear diffusion. For

the invasive process that we are modelling here, we believe that diffusion is not a

dominant transport term and we have a correspondingly small diffusion coefficient

(see Section 4.2 for details). Additionally, we assume that there is also cell-cell ad-

hesion which acts in an opposite manner to the haptotaxis. Following Gerisch and

Chaplain19 we consider non-local interaction terms accounting for both adhesions.

Therefore, we start from the following system of integro-differential equations (in

non-dimensional form - see section 4):

∂tc = D1∆c︸ ︷︷ ︸
diffusion

− ∇ · (c k1 ~ c)︸ ︷︷ ︸
cell−cell adhesion

− ∇ · (c k2 ~ v)︸ ︷︷ ︸
cell−matrix adhesion

+µc(1− c− v)︸ ︷︷ ︸
proliferation

, (2.1)

∂tv = −δvm, (2.2)

∂tm = D3∆m+ αcv − λm, (2.3)

where the second and third terms on the right hand side of the equality (2.1)1 define

the adhesive fluxes for cell-cell adhesion and cell-matrix adhesion, respectively, i.e.

(ki ~ u)(x) =

∫
Ω

ki(x, y)u(y) dy, i = 1, 2 , (2.4)

where Ω ⊂ Rn, ki are n–dimensional vectors (kernels), and D1, µ, δ, D3, α, λ

are positive parameters denoting the cancer cell diffusion coefficient, cancer cell

proliferation rate, extracellular matrix degradation rate, matrix degrading enzyme

diffusion coefficient, matrix degrading enzyme production rate and matrix degrad-

ing enzyme degradation rate, respectively.

The system 2.1 may be written in the following, more general form:

∂tc = D1∆c−∇ · (cG[c , v]) + cg1(c, v) , (2.5)

∂tv = −vg2(m) , (2.6)

∂tm = D3∆m− λm+ g3(v)c , (2.7)
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with a general multicomponent adhesion velocity G[c , v] proposed by Gerisch and

Chaplain19. The function cg1(c , v) describes the rate of cells proliferation. The

function vg2(m) describes the extracellular matrix degradation rate (cf. Sherratt

et al.38 and Gerisch and Chaplain19) and the function cg3(v) describes the rate of

enzyme production in response to extracellular-matrix density.

We note that for an appropriate kernel the non-local operator (2.4) approximates

the gradient. Indeed, in the case of Ω = Rn, instead of k (both k1 and k2) we set

kε:

kε(x, y) = (y − x) k̃ε(|y − x|) , (2.8)

and for every 0 < ε < 1,

supp k̃ε ⊂ [ 0, ε ] ,

ε∫
0

rn+1k̃ε(r) dr

∫
Sn−1

|η|2 dη = 1, (2.9)

with

lim
ε→0

ε∫
0

rn+2k̃ε(r) dr = 0. (2.10)

It is easy to see that such k̃ε can be chosen as a characteristic function supported

on [0, ε]. For such a k̃ε one may formally recover the following terms

kε ~ u −→ ∇u as ε −→ 0 . (2.11)

In fact, using the Taylor expansion up to the first order, we obtain

(kε ~ u)(x) =
∫
Rn

(y − x) k̃ε(|y − x|)u(y) dy

=
∞∫
0

∫
Sn−1

rnk̃ε(r)u(x+ rη)η dη dr

= u(x)
∞∫
0

∫
Sn−1

rnk̃ε(r)η dη dr +∇u(x)
∞∫
0

rn+1k̃ε(r) dr
∫

Sn−1

|η|2 dη

−→ ∇u(x)

(2.12)

as ε→ 0.

3. Mathematical analysis

We consider the system (2.5, 2.6, 2.7) in (0,∞)×Ω , where Ω is a bounded domain

in Rn with smooth boundary ∂Ω. This system is subject to the boundary conditions

〈∇c , ν〉 = 0 = 〈∇m, ν〉 on (0,∞)× ∂Ω, (3.1)

where ν is the outward normal unit vector field at ∂Ω supplemented with the con-

dition

〈G[c , v] , ν〉 = 0 on (0,∞)× ∂Ω. (3.2)
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Notice that (3.1)-(3.2) ensure no-flux through the boundary ∂Ω of both cells and

enzymes. Our choice of boundary conditions is rather mathematically motivated. In

this work we do not consider possible boundary effects. It however may be justified

by the fact that the development of the tumour in our case is essentially far from

the boundary of the domain containing the tissue. The model is supplemented with

initial condition

c(0, x) = c0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, m(0, x) = m0(x) ≥ 0 in Ω. (3.3)

Here, G[c , v] is a general non-local mapping modelling the adhesion velocity due to

both cell-cell and cell-matrix adhesion. The following assumptions on the function

G : C(Ω̄ : R)2 7→ C1,β(Ω̄ : Rn) β ∈ (0 , 1] , (3.4)

are made:

G[c , v](x) =

∫
Ω

G̃(x , y , c(y) , v(y))dy for (c , v) ∈ C(Ω̄ : R)2 (3.5)

where G̃ : Ω2 × R2 7→ Rn is a continuous function satisfying

G̃(x , y, 0, 0) = 0 , for all (x , y) ∈ Ω2, (3.6)

G̃( · , y, ξ, η) ∈ C1,β(Ω̄ : Rn) for all y ∈ Ω, (ξ , η) ∈ R2 and β ∈ (0, 1). (3.7)

There is a constant LG such that for any ξ1 , ξ2 , η1 , η2 ∈ R

|G̃(x , y , ξ1 , η1)− G̃(x , y , ξ2 , η2)|+
|∂xG̃(x , y , ξ1 , η1)− ∂xG̃(x , y , ξ2 , η2)| (3.8)

≤ LG(|ξ1 − ξ2|+ |η1 − η2|)

uniformly with respect to (x , y) ∈ Ω2. A natural example of the adhesion velocity

which satisfies conditions (3.4)-(3.8) and (3.2) is a functional:

G[c , v](x) = ω(x)
( ∫

Ω
(y − x)k1((|y − x|)c(y)dy+∫

Ω
(y − x)k2((|y − x|)v(y)dy

)
,

(3.9)

where ω is any fixed nonnegative function such that ω(x) = 0 for x ∈ ∂Ω19.

We assume that

g1 : R× R 7→ R is a locally Lipschitz function (3.10)

and there are A ≥ 0 and B > 0 such that for c ≥ 0 and v ≥ 0

cg1(c , v) ≤ A−Bc . (3.11)

We assume that

g2 , g3 : R 7→ R are locally Lipschitz functions (3.12)

and g2(y) , g3(y) ≥ 0 for y ≥ 0. Moreover we assume that the derivative

g′2 exists and it is a locally Lipschitz function. (3.13)
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The function g1(c , v) = µ(1 − c − v) with µ > 0 was used in 19 as an example.

Functions g2(m) = δm or g2(m) = m2 and g3(v) = αv with α as a positive constant

are used in 19 and 38.

For further analysis it is convenient to transform system (2.5)-(2.7) to the fol-

lowing

∂tc−D1∆c+ c = −c
(
∇ ·G[c, v]

)
−G[c, v] · ∇c+ c

(
1 + g1(c , v)

)
, (3.14)

∂tv = −vg2(m) , (3.15)

∂tm−D3∆m+ λm = g3(v)c . (3.16)

Next we consider the operators

A1 = −D1∆ + I and A3 = −D3∆ + λI

with their realization in the space X = Lp(Ω). They have a common domain of

definition D = D(A1) = D(A3) = {v ∈W 2,p(Ω) : ∂νv|∂Ω = 0}. Then, since A1 and

A3 are sectorial operators, fractional powers are well defined and we denote

Xγ = D(Aγ1) = D(Aγ3) γ ∈ (0 , 1)

which is a Banach space equipped with the norm (see 22)

‖u‖Xγ = ‖Aγu‖X for u ∈ Xγ . (3.17)

We shall use the classical semigroup estimates (see 22, p.27)

‖Aγe−Atu‖X ≤ kγt−γe−at‖u‖X (3.18)

which holds for any u ∈ X where kγ and a are positive constants and

‖Aγe−Atu‖X ≤ k0‖u‖Xγ for u ∈ Xγ (3.19)

where k0 is a positive constant. We recall also that

Xγ ⊂ W 1,p(Ω) for γ >
1

2
, (3.20)

Xγ ⊂ C0 ,r(Ω̄) for
r

2
+

n

2p
< γ <

1

2
+

n

2p
, r ∈ (0 , 1) , (3.21)

Xγ = H2γ
p (Ω) for 0 ≤ γ ≤ 1

2
+

1

2p
(3.22)

where H2γ
p (Ω) is the Bessel potential space42. We notice also that H2γ

p (Ω) = F 2γ
p ,2(Ω)

where the latter is the Triebel-Lizorkin space (see 42 Sect. 4.3.1) and that for any

p0 > p the Sobolev space W 2,p0(Ω) is continuously embedded in the space F 2γ
p ,2(Ω)

which follows from 43, Sections 3.3.1 and 2.3.5. Notice that for

γ ∈
(1

2
,

1

2
+

1

2p

)
for p > n (3.23)

(3.20)-(3.22) are satisfied.

Theorem 1. Suppose that (3.1)-(3.13) and (3.23) are satisfied. If c0,m0 ∈ Xγ

and v0 ∈ W 1,p(Ω) then there exists a unique global-in-time solution to (2.5)-(2.7)



8 Chaplain et al.

with (3.1)-(3.3) such that for any T > 0, c ,m ∈ C([0 , T ) : Xγ) and v ∈ (C[0, T ) :

W 1,p(Ω)). Moreover, c and m are classical solutions for t > 0 and

sup
t>0

(‖c(t)‖∞ + ‖v(t)‖∞ + ‖m(t)‖∞) <∞. (3.24)

Proof. The existence of a local-in-time solution is based on the Banach contraction

theorem. We first denote E = X ×W 1,p(Ω) ×X and for a fixed T > 0 which will

be specified later we define the space

EγT = C([0 , T ] : Eγ) where Eγ = Xγ ×W 1,p(Ω)×Xγ (3.25)

equipped with the norm ‖y‖Eγ = max{‖y1‖Xγ , ‖y2‖W 1,p(Ω) , ‖y3‖Xγ} for y =

(y1 , y2 , y3) ∈ Eγ . Notice that due to (3.8), (3.12) and the embedding (3.21) with

(3.20) the terms on the right hand side of (3.14)-(3.16) define mapping F : Eγ 7→ E,

F = (F1 , F2 , F3). In light of (3.12) and (3.20) and the property of the superposition

operator acting on the space W 1,p(Ω) for p > n (see 35 Sect. 5.2.3), m ∈ W 1,p(Ω)

and the value of the function m 7→ g2(m) is also in W 1,p(Ω). Since the latter space

for p > n is an algebra with pointwise multiplication we deduce that the function

(v ,m) 7→ F2 = vg2(m) is also W 1,p(Ω)-valued. The hypotheses (3.8), (3.10) and

(3.12) with (3.13) as well as the embeddings (3.21), (3.20) imply also that F is a

locally Lipschitz function. We note at this point that Lipschitz continuity of the

derivative g′2 in (3.13) is necessary for Lipschitz continuity of F2. Indeed, for any

(vi,mi) such that (ci , vi ,mi) belongs to a closed ball B(0 , %) ⊂ Eγ , i = 1 , 2 we

obtain (after standard computations) that

‖F2(v1 ,m1)− F2(v2 ,m2)‖W 1,p(Ω) ≤
K%

(
‖m1 −m2‖Xγ + ‖v1 − v2‖W 1,p(Ω)

) (3.26)

where K% depends on % and on ‖g′2‖W 1 ,∞(0 ,U) with U > 0 depending on %.

Next we define mapping Φ : EγT 7→ EγT ,Φ = (Φ1 ,Φ2 ,Φ3) ,

Φ[c , v ,m](t) =


Φ1 = e−A1tc0 +

∫ t
0
e−Ac(t−s)F1(c(s), v(s))ds

Φ2 = v0 +
∫ t

0
F2(m(s) v(s))ds

Φ3 = e−A3tm0 +
∫ t

0
e−Am(t−s)F3(c(s) , v(s))ds.

(3.27)

We note that

t 7→ v0 −
∫ t

0

v(s)g2(m(s))ds (3.28)

belongs to the space C([0 , T ] : W 1,p(Ω)).

Denoting y0 = (c0 , v0 ,m0) ∈ Eγ we take R > 0 big enough such

that max{‖c0‖Xγ , ‖m0‖Xγ} < R
2k0

where k0 has been defined in (3.19) and

‖v0‖W 1,p(Ω) <
R
2 . Next we define VT ⊂ EγT

VT = {y ∈ EγT : ‖y‖EγT ≤ R} . (3.29)
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It follows that there exists MR such that supy∈VT ‖F (y)‖E < MR . We shall

show that for T small enough Φ maps VT into itself. Indeed using (3.18) and (3.19)

‖Φ1[c , v](t)‖Xγ = ‖Aγc e−Actc0 +

∫ t

0

Aγc e
−Ac(t−s)F1(c(s) , v(s))ds‖X (3.30)

≤ k0‖c0‖Xγ +MR

∫ T

0

kγ
tγ
e−asds ≤ R

2
+MR

kγ
1− γ

T 1−γ .

Similar arguments yield

‖Φ3[c , v](t)‖Xγ ≤
R

2
+MR

kγ
1− γ

T 1−γ (3.31)

and finally

‖Φ2[v ,m](t)‖W 1,p(Ω) ≤
R

2
+ TMRKR . (3.32)

We then conclude choosing T such that

max{TMRKR ,MR
kγ

1− γ
T 1−γ} < R

2
. (3.33)

Similar estimates (cf. 22 p. 55) made for the differences of arguments lead to the

conclusion that for T small enough Φ is a contraction and by the Banach theorem

it has a fixed point in VT . Observe now that due to (3.21) for any T ′ < T function

v : [0 , T ′] 7→ C(Ω) given by (3.28) is locally Lipschitz. Therefore function t 7→
F1(· , v(t)) in

c(t) = e−A1tc0 +

∫ t

0

e−A1(t−s)F1(c(s) , v(s))ds,

is also a locally LipschitzX-valued function of time. It then follows from 22 (Sec. 3.3)

that there is a maximal time of existence Tmax of a regular solution c ∈ C[0 , Tmax :

Xγ) such that for t ∈ (0 , Tmax) , c(t) ∈ D(A1) and by 22 (Sec. 3.5) c ∈ Cβ(0 , Tmax :

Xα) for some α , β ∈ (0 , 1). Notice also that v ∈W 1 ,∞(0 , T : W 1,p(Ω)). Thus (3.14)

is satisfied in a pointwise manner on (0 , Tmax) × Ω and it follows from (3.7) and

(3.21) and the regularity theory of parabolic equations that c is in fact the classical

solution to (3.14). The same conclusion can be drawn for m.

Let c̃ = c1−c2 , ṽ = v1−v2 , m̃ = m1−m2 denote the differences of components of

any two solutions starting from the same initial condition. The following inequality

is an easy consequence of the Lipschitz continuity of all nonlinear terms and the

fact that the components of the solutions are L∞-bounded functions on bounded

time intervals

d
dt

∫
Ω

(c̃2(t, x) + ṽ2(t, x) + m̃2(t, x))dx ≤

Const.
∫

Ω
(c̃2(t, x) + ṽ2(t, x) + m̃2(t, x))dx for t ∈ [0 , Tmax).

(3.34)

Now the uniqueness of the solution follows from Gronwall’s Lemma.
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Next we infer from the maximum principle that c ≥ 0 on [0 , Tmax)× Ω. Notice

that v may be expressed in the form

v(t) = v0 exp

{
−
∫ t

0

g2(m(s))ds

}
, (3.35)

and thus it is a nonnegative function. Now it follows from (2.7) that also m ≥ 0 by

the maximum principle.

In order to prove that the solution is global in time i.e. Tmax =∞ we come back

to the divergence form in the first equation (2.5) and integrate it on Ω. Using (3.1),

(3.2) and then (3.11) we obtain for t ∈ [0 , Tmax)

d

dt

∫
Ω

c(t, x)dx =

∫
Ω

cg1(c, v)(t , x)dx ≤ A|Ω| −B
∫

Ω

c(t, x)dx .

Hence, by Gronwall’s Lemma we infer that

sup
t∈[0 ,Tmax)

‖c(t , ·)‖L1(Ω) ≤ max

{
A|Ω|
B

, ‖c0‖L1(Ω)

}
:= Kc . (3.36)

Since

sup
t∈[0 ,Tmax)

‖v(t, ·)‖∞ ≤ ‖v0‖∞ (3.37)

it follows from (2.7) that

d

dt

∫
Ω

m(t, x)dx+ λ

∫
Ω

c(t, x)dx =

∫
Ω

g2(v)cdx ≤ sup
v∈[0 ,‖v0‖∞]

g2(v)Kc (3.38)

and by the Gronwall lemma

supt∈[0 ,Tmax) ‖m(t , ·)‖L1(Ω) ≤
max

{
supv∈[0 ,‖v0‖∞] g2(v)Kc

λ , ‖m0‖L1(Ω)

}
:= Km .

(3.39)

It then follows from (3.5)-(3.8) that for all t ∈ [0 , Tmax)

‖(
∑n
i=1 ∂xiG[c , v]) +G[c , v]‖∞ ≤ LG(‖c(t)|L1(Ω)) + ‖v(t)|L1(Ω)

≤ LG(Kc + ‖v0‖∞|Ω|).
(3.40)

Next we consider the elliptic operator (3.14) which can be rewritten in the following

form

−∆c+

n∑
i=1

bi∂xic+ dc

where bi = Gi[c, v] and d =
∑n
i=1 ∂xiG[c , v]) are evaluated on the solution. It follows

from (3.40) that bi and d are uniformly bounded on (0,∞)× Ω. Since the reaction

part is dissipative in the sense of 12, it is possible to use the Moser-Alikakos method

(see 12 Sec. 9.3 in our particular case) and derive for c a uniform in time L∞-bound
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from the uniform in time L1-bound (see 3.36). The same can be done for m. Hence,

taking into account (3.35) there is a constant K∞ such that

sup
t∈[0 ,Tmax)

(‖c(t)‖∞ + ‖v(t)‖∞ + ‖m(t)‖∞) < K∞ . (3.41)

This result can be used to show that

‖F1(c(t) , v(t))‖X ≤ K1(1 + ‖c(t)‖Xγ ) for t ∈ [0 , Tmax) (3.42)

and

‖F3(c(t) , v(t))‖X ≤ K3 for t ∈ [0 , Tmax), (3.43)

where K1 ,K3 are constants depending on K∞. Suppose now that Tmax <∞ and

max{‖c(t)‖Xγ , ‖m(t)‖Xγ , ‖v(t)‖W 1,p(Ω)} → ∞ as t→ Tmax . (3.44)

It then follows from 22 Cor. 3.3.5 that

sup
t∈[0 ,Tmax)

‖c(t)‖Xγ + ‖m(t)‖Xγ <∞. (3.45)

On the other hand (3.20) implies that there is a constant Km such that

supt∈[0 ,Tmax) ‖m(t)‖W 1,p(Ω) < Km. By (3.35) we obtain

∇v(t) = ∇v0 exp
{
−
∫ t

0
g2(m(s)ds

}
−v0 exp

{
−
∫ t

0
g2(m(s))ds

}∫ t
0
g′2(m(s))∇m(s)ds,

whence,

sup
t∈[0 ,Tmax)

‖v(t)‖W 1,p(Ω) ≤ K2(‖v0‖W 1,p(Ω) + Tmax sup
t∈[0 ,Tmax)

‖m(t)‖W 1,p(Ω)) <∞ .

where K2 is a constant depending on K∞ and on ‖g2(·)‖W 1,∞(0 ,U) with U =

supt∈[0,Tmax) ‖m(t)‖∞ . This bound along with (3.45) contradicts (3.44). Thus the

solution may by prolonged for all t > 0 and Tmax =∞ .

4. Computational results: Numerical simulations in 1D

4.1. Nondimensionalisation

In this section numerical simulations of the non-local invasion model in the one-

dimensional case are presented. Recall the system (2.1):

∂tc = D1∂
2
xc− ∂x · (cG[c , v]) + µc(1− c/c0 − v/v0) , (4.1)

∂tv = −δvm , (4.2)

∂tm = D3∂
2
xm+ αcv − λm , (4.3)

where for the cancer cells we have assumed a logistic proliferation function (includ-

ing competition for space) with proliferation rate µ, a reference tumour density c0

and extracellular matrix density v0. G[c , v] is the general multicomponent adhesion
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velocity proposed by Gerisch and Chaplain19. The extracellular matrix is degraded

at rate δ upon contact with the degrading enzymes; these are produced at rate α

when the cancer cells come into contact with the matrix and decay with rate λ.

In order to solve our system of equations (4.1)-(4.3) numerically we first of

all non-dimensionalise the equations. The variables and parameters in the system

(4.1)-(4.3) and their associated boundary and initial conditions are transformed into

dimensionless quantities using the following reference variables:

i) a reference length scale, L, (e.g. the maximum invasion distance of the

cancer cells at this early stage of invasion 0.1− 1cm);

ii) a reference time unit, τ =
L2

D
, where D is a reference chemical diffusion

coefficient e.g. 10−6cm2s−1 (see Ref. 5), therefore, we deduce that τ varies

between 104 − 106sec;

iii) a reference tumour cell density c0, extracellular matrix density v0 and

matrix degrading enzymes density m0 (where c0 = 6.7 × 107 cell cm−3,

v0 = 10−1nM and m0 is an appropriate MDE reference concentration, (see

Gerisch & Chaplain19 for details).

We define the non-dimensional variables:

t̃ =
t

τ
, x̃ =

x

L
, c̃ =

c

c0
, ṽ =

v

v0
, m̃ =

m

m0
, (4.4)

and new parameters via the following scaling:

D̃1 =
D1

D
, D̃3 =

D3

D
, µ̃ = µτ, δ̃ = δv0τ, α̃ =

αc0v0τ

m0
, λ̃ = λτ.

Henceforth we omit the tildes for notational simplicity, so our non-dimensionalised

system reads as follows:

∂tc = D1∂
2
xc− ∂x (cG[c , v]) + µc(1− c− v) , (4.5)

∂tv = −δvm , (4.6)

∂tm = D3∂
2
xm+ αcv − λm . (4.7)

Following Gerisch and Chaplain19 (see the change of variables in (2.12)), we take

the adhesion velocity G[c , v] to be:

G[c, v](t, x) =
1

R

∫ R

0

1∑
k=0

η(k)g(c(t, x+ η(k)r), v(t, x+ η(k)r))ω(r)dr

where η(k) = (−1)k, k = 0, 1 is the right and left unit outer normal, R is the

so-called sensing radius, g(c, v) is a function representing cell-cell and cell-matrix

interaction and ω is a function describing how strong the adhesion velocity is in-

fluenced by points of the sensing region at x depending on their distance r from
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x. This function should, however, not alter the magnitude of the adhesion velocity.

For this reason we require that ω is normalised in the sense that its integral over

the sensing region is unity. Hence, we take

ω(r) =
1

R

(
1− r

R

)
.

We note that with the above choice of the function ω, the corresponding kernels k1

and k2 are discontinuous (cf. Armstrong et al.3, Gerisch & Chaplain19). The math-

ematical analysis of the previous section assumed a smooth kernel and therefore is

appropriate for the smooth regularization of ω.

Finally, taking g[c, v] = S11c + S12v, where S11 is the cell-cell adhesion coefficient

and S12 is the cell-matrix adhesion coefficient, we have our full non-dimensional

system of equations:

∂tc = D1∂
2
xc− ∂x

( c
R

∫ R

0

1∑
k=0

η(k)S11c(t, x+ η(k)r)ω(r)dr
)

︸ ︷︷ ︸
cell−cell adhesion

− ∂x
( c
R

∫ R

0

1∑
k=0

η(k)S12v(t, x+ η(k)r)ω(r)dr
)

︸ ︷︷ ︸
cell−matrix adhesion

+µc(1− c− v) (4.8)

∂tv = −δvm (4.9)

∂tm = D3∂
2
xm+ αcv − λm. (4.10)

4.2. Parameter values

We took our baseline set of parameters in line with previous comparable models of

cancer cell invasion1,10,11,19 and whenever possible parameter values are estimated

from available experimental data e.g. estimates for cancer cell random motility

vary between 10−10cm2s−1 − 10−9cm2s−1 and those for MDE diffusion between

10−10cm2s−1 − 10−9cm2s−1, meaning our non-dimensional parameters D1 and D3

are between 10−4 − 10−3 and 10−4 − 10−2 respectively. A summary of the baseline

set of parameter values used in the computational simulations is given in the table

below:

Parameter Description Value

D1 cancer cell diffusion coefficient 0.00035

µ cancer cell proliferation rate 0.15

γ matrix degrading rate 8.15

D3 MDE diffusion coefficient 0.00491

α MDE production rate 0.75

λ MDE degradation rate 0.5
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Given that the main aim of the computational simulations was to examine the rela-

tive importance of cell-cell and cell-matrix adhesion, we varied the two parameters

S11 and S12 over a range of values as follows:

Parameter Description Value

S11 cell-cell adhesion coefficient 0− 0.5

S12 cell-matrix adhesion coefficient 0− 0.5

We note that the parameter values given above have been taken from a number of

different experiments and that many of the estimated parameters will have been

measured in highly-controlled, laboratory conditions. Such experimental systems

are very different from the actual in vivo biological system which evolves over time.

However, we note that novel experimental assays now exist which are aimed at

quantifying cancer cell invasion of tissue, both in 3-dimensional collagen gels and in

mice27,28. In future, such experimental systems may help determine more accurately

the actual in vivo parameter values.

4.3. Simulation results

All model simulations were performed using the MatlabR© system. The numerical

scheme follows the method of lines by first discretising the non-local model in space,

yielding an initial value problem for a large system of ordinary differential equa-

tions. This system is then solved using the time integration scheme ROWMAP45,

implemented in a Fortran subroutine and called from MatlabR©. For the discreti-

sation in space we use a second-order finite volume approach which makes use

of flux-limiting for an accurate discretisation of the taxis/adhesion term. A key

to efficiency for the spatial discretisation of the non-local model is an accurate ap-

proximation of the non-local term and its efficient evaluation using FFT techniques.

More details of the numerical scheme are outlined in Gerisch and Chaplain19 and

full details are given in Gerisch20. All our simulations were performed on a spatial

domain Ω = (−4, 4), with periodic boundary conditions (in all the numerical ex-

periments described below the boundary conditions had no or no significant effect

on the solution). Initial conditions were the same for each simulation i.e. an initial

mass of cancer cells was placed near the origin, having already released some MDE

that had degraded the ECM i.e.

c(x, 0) = exp(−100x2),

v(x, 0) = 1− c(x, 0),

m(x, 0) = 0.5c(x, 0).

Figure 1 shows the plots of the solution profiles of the cancer cell and ECM

density and MDE concentration at times t = 10, 20, 30, 40 from a simulation of
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the invasion model. In these simulations, the cell-cell adhesion parameter S11 has

a value S11 = 0.01, while the cell-matrix adhesion parameter S12 takes the value

S12 = 0.02. As can be seen from the plots, as time increases the cancer cells invade

further into the matrix in the manner of a “standard” advancing front.

We now consider the effect of increasing the cell-matrix adhesion parameter S12.

Figure 2 shows the plots of the solution profiles of the cancer cell and ECM den-

sity and MDE concentration at times t = 10, 20, 30, 40 where the cell-cell adhesion

parameter S11 = 0.01, while the cell-matrix adhesion parameter S12 has been in-

creased and now takes the value S12 = 0.5. Once again, as can be seen from the

plots, as time increases the cancer cells invade further into the matrix. However, in

contrast to the cancer cell profiles of figure 1, the cancer cell profiles here are more

heterogeneous. As time increases, behind the leading front of invading cells, cancer

cell proliferation fills the gap created through degradation of the ECM.

Figure 3 shows the plots of the solution profiles of the cancer cell and ECM den-

sity and MDE concentration at times t = 10, 20, 30, 40 where the cell-cell adhesion

parameter has been increased from its previous value of 0.01 and is now taken to

be S11 = 0.05. The cell-matrix adhesion parameter S12 remains unchanged from

the previous value S12 = 0.5. Once again, as can be seen from the plots, as time

increases the cancer cells invade further into the matrix. However, the cancer cell

profiles here are yet more heterogeneous than both the previous figures.

Next we consider the case where we have a large cell-cell adhesion value and a

small cell-matrix adhesion value. Figure 4 shows the plots of the solution profiles of

the cancer cell and ECM density and MDE concentration at times t = 10, 20, 30, 40

where the cell-cell adhesion parameter has been increased to be S11 = 0.5. The

cell-matrix adhesion parameter S12 has been decreased to a value S12 = 0.01. As

can be seen from the plots, as time increases the increased value of S11 prevents

the cancer cells invading into the matrix. However a small fragment of cancer cells

does ”break off” from the main cancer cell mass which is localised near the origin,

but because of the high cell-cell adhesion does not manage to penetrate deeply into

the matrix and itself remains localised around x = 0.3.

In the next set of figures we consider a case where the cell-cell and cell-matrix

adhesion parameters take an equal value of 0.1 i.e. S11 = S12 = 0.1. Figure 5 shows

the plots of the solution profiles of the cancer cell and ECM density and MDE

concentration at times t = 10, 20, 30, 40. As can be seen from the plots, as time

increases a small fragment of cancer cells does “break off” from the main cancer

cell mass localised near the origin, but this time manages to continue to invade the

ECM as a localised mass, perhaps modelling the initiation of metastatic spread.

Finally we consider two scenarios where the parameters S11 and S12 are time-

dependent in such as way as to model the effect of an increasingly malignant and

aggressive invading cancer. It is known that as a cancer progresses and becomes

more malignant, successive mutations cause a reduction in cell-cell adhesion and

an increase in cell-matrix adhesion. Therefore we consider S11 to be a monotonic

decreasing function of time and S12 a monotonic increasing function of time.
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Figure 6 shows the plots of the solution profiles of the cancer cell and ECM

density and MDE concentration at times t = 10, 20, 30, 40 where S11 = 0.01 +

0.49 exp(−0.01t2) (i.e. S11 decreases from a maximum value of 0.5 to 0.01) and

S12 = 0.2. As can be seen from the plots, the cancer cells invade the ECM in a

manner which consists of aspects from all the previous simulations.

Figure 7 shows the plots of the solution profiles of the cancer cell and ECM

density and MDE concentration at times t = 10, 20, 30, 40 where S11 = 0.01 +

0.49 exp(−0.01t2) (i.e. S11 decreases from a maximum value of 0.5 to a minimum

value of 0.01) and S12 = 0.5−0.45 exp(−0.01t2) (i.e. S12 increases from a minimum

value of 0.05 to a maximum value of 0.5). As can be seen from the plots, the cancer

cells invade the ECM in a manner in a more heterogeneous manner than in the

previous figure.

Overall, the compuational simulation results show that a range of heterogeneous

invasive behaviour can be observed by varying the two adhesion parameters S11 and

S12.

5. Discussion

In this paper we have developed a mathematical model of cancer cell invasion of

tissue. The main focus of the paper was to examine the relative effects of cell-cell

adhesion and cell-matrix adhesion on the invasion process. In order to achieve this,

we formulated a minimal mathematical model using a system of nonlinear, non-

local partial integro-differential equations describing the spatio-temporal dynamics

of cancer cells, matrix degrading enzyme and extracellular matrix (tissue). Cell-cell

adhesion and cell-matrix adhesion were modelled using non-local terms following

the approach of Armstrong et al.3 and Gerisch and Chaplain19. Certain analyti-

cal results were proved and computational results of numerical simulations of our

system were given.

Having formulated our model in Sec. 3, in Sec. 4 we presented a mathematical

analysis of our model and proved certain existence, uniqueness and smoothness

results concerning the solutions of this system. First we proved the existence of local-

in-time solutions using the Banach contraction mapping theorem and uniqueness of

solutions using certain differential inequalities and Gronwall’s Lemma. Finally, using

Gronwall’s Lemma and the Moser-Alikakos Method, we proved that our solution is

bounded and global in time.

In Sec. 5, we presented the compuational results of numerical simulations of our

model, in particular examining the relative effects of two key parameters of the

model, S11 and S12, the cell-cell adhesion coefficient and the cell-matrix adhesion

coefficient, respectively. The computational simulation results showed a range of

spatio-temporal behaviour depending on the relative sizes of S11 and S12. These

behaviours may be classified as follows:

(1) The cancer cells invade the tissue relatively slowly in a non-aggressive manner,

with the extracellular matrix being degraded by the enzymes (see Fig. 1). This
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occurs when both the cell-cell and cell-matrix adhesion are rela- tively small

(S11 = 0.01 and S12 = 0.01) and represents the fact that the cancer cells

have not developed strong enough cell-matrix adhesions and so remain rather

localised;

(2) The cancer cells invade the tissue more quickly with a slightly more heteroge-

neous profile, again with the extracellular matrix being degraded by the enzymes

(see Fig. 2). This occurs when the cell-cell adhesion is relatively small and the

cell-matrix adhesion is relatively big (S11 = 0.01 and S12 = 0.5). This represents

the fact that the cancer cells have developed stronger cell-matrix adhesions and

have become more aggressive;

(3) The cancer cells invade the tissue quickly with a highly heterogeneous profile

(see Fig. 3). This occurs for a slightly increased value of the cell-cell adhesion

(compared with Figs. 1,2) and a relatively large value of cell-matrix adhesion

(S11 = 0.05 and S12 = 0.5).

(4) The invasion is almost stopped and the cancer cells remain localised around

their initial conditions; the tissue is slowly degraded by the enzymes (see Fig.

4). This occurs for a large value of the cell-cell adhesion parameter and small

value of the cell-matrix adhesion parameter (S11 = 0.5 and S12 = 0.01) and

represents the situation where the cancer cells have not been able to break their

strong cell-cell adhesion bounds and therefore are not able to invade efficiently;

(5) An invasive fragment of cancer cells breaks away from the central mass and

invades in a metastatic manner (Fig. 5). This occurs when the cell-cell and

cell-matrix adhesion parameters are equal but relatively strong (S11 = 0.1,

S12 = 0.1);

(6) A combination of these effects is obtained by varying the parameters S11 and

S12 with time (Figs. 6,7), which is generally the case during cancer development

and models the tendency of a cancer to become increasingly malignant and

aggressive over time.

In general the results from the computational simulations show that an increased

value of the cell-cell adhesion parameter results in a more heterogenous pattern of

invasion whereas an increased value of the cell-matrix adhesion parameter results in

a faster invasion. These results are in qualitative agreement with previous studies

and models6,7,15,25. The scenario that probably reflects the biological reality the best

is where the cell-cell and cell-matrix adhesion parameters change dynamically over

time (Figs. 6,7). Therefore experiments which could precisely measure these effects

would be useful to aid in understanding the malignant progression of a cancer27,28.

Future work may consider developing a multiscale version the current model.

It is clear that events at the sub-cellular and cellular level influence events at the

tissue scale, which is where the focus of the current paper lies. We could therefore

aim to extend the current model by adopting the approach of Marciniak-Czochra &

Ptashnyk26 and try to incorporate sub-cellular and cellular information (e.g. data

concerning E-cadherin, β-catenin levels33,34) into our cell-cell adhesion parameter
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S11. Using this modelling approach it would also be possible to incorporate data

concerning interactions between integrins (on the cell surface) and extracellular ma-

trix components into the cell-matrix adhesion parameter S12.
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Fig. 1. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter is S11 = 0.01, while the cell-matrix adhesion parameter S12 = 0.02.

The plots show that as time increases the cancer cells invade the ECM more deeply.
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Fig. 2. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter is S11 = 0.01, while the cell-matrix adhesion parameter S12 = 0.5.

The plots show that as time increases the cancer cells invade the ECM more deeply but with a

different profile than those in figure 1.
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Fig. 3. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter is S11 = 0.05, while the cell-matrix adhesion parameter S12 = 0.5.

The plots show that as time increases the cancer cells invade the ECM more deeply but with a

more heterogeneous profile than those in figures 1 and 2.
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Fig. 4. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter is S11 = 0.5, while the cell-matrix adhesion parameter S12 = 0.01.

The plots show that because of the increased cell-cell adhesion, the cancer cells remain localised

around the origin, although a fragment of cells breaks away from the main mass but then itself
remains localised around x = 0.3.
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Fig. 5. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter is S11 = 0.1, while the cell-matrix adhesion parameter S12 = 0.1. The

plots show an invasive fragment of cancer cells breaking away from the central mass and invading

in a localised “metastatic” manner.



26 Chaplain et al.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance into tissue

Ca
nc

er
 c

el
l d

en
sit

y;
 M

DE
, E

CM
 c

on
ce

nt
ra

tio
n

t=10

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance into tissue

Ca
nc

er
 c

el
l d

en
sit

y;
 M

DE
, E

CM
 c

on
ce

nt
ra

tio
n

t=20

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance into tissue

Ca
nc

er
 c

el
l d

en
sit

y;
 M

DE
, E

CM
 c

on
ce

nt
ra

tio
n

t=30

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance into tissue

Ca
nc

er
 c

el
l d

en
sit

y;
 M

DE
, E

CM
 c

on
ce

nt
ra

tio
n
t=40

Fig. 6. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter S11 is a monotonic decreasing function of time (see text for precise

functional form), while S12 = 0.2. The cancer cells invade in a manner combining aspects of the

previous invasive plots.
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Fig. 7. Plots showing the solution profiles of the cancer cell (blue) and ECM density (red) and

MDE concentration (green) at times t = 10, 20, 30, 40 from a simulation of the invasion model. The
cell-cell adhesion parameter S11 is a monotonic decreasing function of time, while the cell-matrix

adhesion parameter S12 is a monotonic increasing function of time (see text for precise functional

forms). The cancer cells invade in a manner combining aspects of the previous invasive plots seen
in Figures 1 - 5, but more heterogeneously than Figure 6.


