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Abstract

Biological processes are inherently very complex and involve many unknown relation-
ships and mechanisms at different scales. Despite many efforts, one still cannot explain
all the observed phenomena and, if necessary, make any desirable changes in the dy-
namics. Recently, it has become apparent that the opportunity lies in complementing
the traditional, heuristic experimental approach with mathematical modelling and
computer simulations. Achieving a simulation scale that corresponds for instance to
clinically detectable tumour sizes is still a huge challenge, however it is necessary to
understand and control complex biological processes. In this paper we present a novel
high performance computational approach allowing simulations of 3D cell colony dy-
namics in previously unavailable tissue scale. Due to the high parallel scalability we
are able to simulate cell colonies composed of 109 cells, which allows for instance to
describe tumour growth in its early clinical stage.
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1 Introduction

Experimental methods alone are very often not sufficient to build a consistent,
systematic theory which is capable of describing biological phenomena. Explor-
ing all the complexities of biological systems may require many experiments to
be performed. Moreover, a full understanding of the governing mechanisms with
the use of experimental method alone is nearly impossible due to their highly
nonlinear nature. One of the tools extensively used to complement the tradi-
tional, experimental approach is mathematical modelling, which aims at the
mathematical representation of biological processes using a variety of analytical
and computational techniques. Such models have proved to be very successful
in many applications e.g. systems biology, bioinformatics, molecular dynamics,
neurobiology, biological tissue and cell modelling. In particular, numerous math-
ematical models have been proposed to study biological processes related to cell
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colonies growth from discrete individual based methods simulating intercellular
dynamics through continuum models describing global population mechanisms,
to hybrid models combining both individual based and continuum approaches.
Discrete or hybrid models have been widely used in mathematical oncology,
many aspects of tumour growth such as early avascular tumour growth, tumour
invasion or tumour angiogenesis have been addressed (see an excellent review
of Lowengrub et al. [1]). Other biological processes that have been modelled
with the use of individual-based models are chemotactic cell movement, blood
clotting, tissue formation and morphogenesis [2].

Biological cells are discrete entities and their precise spatial location within a
cell colony has an impact on whether they grow and divide. They are influenced
by signals from other cells, external factors such as nutrient concentration, stress
and of course their own internal signalling pathways. Individual based models
proved to be very successful in modelling many biological phenomena related
to cellular processes, since they analyse spatial and temporal dynamics at the
level of the cell, linking individual behaviour with the macroscopic one. Individ-
ual based approach provides scope to include different cell types, sub-cellular
structures, intracellular dynamics and the spatial location of individual cells.
Moreover, just like actual biological cells, each computational cell can have a
stochastic nature.

At the cellular level, the key processes that are modelled are division, dif-
ferentiation, apoptosis and interactions between cells. These processes are reg-
ulated by cascades of biochemical reactions called signalling pathways. Regula-
tory proteins, whose production is triggered by signalling pathways, initiate or
modify the processes of cell division and death. For instance, the loss of control
over cell division is linked to mutations of genes encoding proteins involved in
the regulation of the cell cycle. As a result of these mutations, intracellular sig-
nalling pathways act in an altered way leading to further pathological changes
in the organism (these pathways may become a therapeutic goal in the future).
In turn, cell differentiation, both normal and pathological, influences the sig-
nalling pathway dynamics, which leads to subsequent changes at the cellular
level. Taking into account the connections of the models at the cellular and
sub-cellular scale is necessary in order to describe the function of cells.

Individual-based models can be on- or off-lattice. Off-lattice models however,
being more biologically realistic (since the cells are not constrained by a pre-
defined underlying grid), are much more computationally expensive.

Although mathematical modelling in biology led to the development of many
computer simulation tools, none of those tools is capable of simulating cellular
systems on the clinically detectable scale. Modelling complex and multiscale
biological processes that involve many unknown relations and mechanisms on
such scales requires the development of high performance computational (HPC)
tools. It is especially important for biological systems in which the properties
of individual cells considered at extremely high resolutions can influence the
dynamics and geometry of a large population of cells. The increasing need for
accuracy has led to the development of highly complex and computationally
demanding models and we believe that computational methodology described
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in this paper can be used for their further development.
Most of the published models focus on theoretical modelling issues so to

speak, neglecting the computational implementation corresponding to the real
scale of the problem. Here, we do the opposite, i.e. we place the emphasis on
the efficient implementation of the generic off-lattice individual-based model of
cell colony dynamics rather then modelling particular biological processes. The
ongoing research will be carried out on an HPC systems. The computer code
was developed for optimal performance on the IBM Blue Gene/Q supercomputer
[3] and can be used to simulate biological processes on previously unachievable
scales. Our goal is to enable accurate and complex simulations of biological
processes in cell colonies consisting of 109 and more cells. This large-scale
computational approach will allow for simulations to be carried out over spatial
scales up to 1cm in size i.e. the tissue scale. The proposed computational model
is a general framework for large scale simulations of various biological processes
occurring in cellular colonies, that can be further adapted to simulate particular
processes such as biofilm development, vasculogenesis or solid tumour growth.

Here, we first describe the mathematical model of cell colony dynamics. We
then discuss computational methods and present details of the corresponding
parallel implementation. Finally, we share results from our recent applications
to tumour growth invasion.

2 Description of the model

In this section, we describe the basic assumptions of our model. Thanks to the
continuous development and enhancement of HPC we were able to address the
complexity and dynamics of very large cell colonies with the use of off-lattice
individual-based models.

2.1 Cell description

We consider cells as free objects that reside in three-dimensional space. The
number of cells in the model is referred to as N . Each cell ci position is described
by its Cartesian coordinates (xci , yci , zci). Each cell size and shape is described
by a sphere centered at (xci , yci , zci) with radius rci . Both the position and size
of a cell can change in time. Cells interact with each other. For every cell ci
its maximum intercellular interaction distance is defined by a neighbourhood
sphere Bεci(ci) centered on (xci , yci , zci) with a radius of εci.

2.2 Cell cycle and cell mitosis

The growth of a population of cells is based on the growth and division of
individual cells. In order to proliferate, a cell must undergo an ordered series of
reactions that allows for the duplication of its contents and finally the splitting
into two new daughter cells. These processes of duplication and division are
called, collectively, the cell division cycle (or simply the cell cycle) [4]. The
eukaryotic cell cycle is divided into four phases: M-phase, when the actual
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division of cell occurs, G1-phase, which is a phase of cell growth that occurs
after the end of the division, and prior to DNA duplication, S-phase, when
nuclear DNA is duplicated, and G2-phase, when a cell completes preparation
for cell division (see Fig. 1).

Fig. 1: Sequence of events leading to cell division. Decision points: ”Sufficient
room for growth”, ”Growth phase completed” and ”Ready for DNA syn-
thesis” corresponds to the G1/S checkpoint, decision point ”G2 check-
point passed” corresponds to the G2/M checkpoint. Decision Point ”New
space available” corresponds to the cell decision whether it can re-enter
the G1 phase.

The G1-phase allows additional time for a cell to grow and to monitor its
environment. If conditions are particularly unfavourable, instead of entering
S-phase a cell can enter a resting state - G0-phase, where it remains until condi-
tions improve and it continues the cell cycle. The first cell cycle checkpoint, so
called G1/S checkpoint, is located at the end of the G1-phase, when a cell takes
a decisive step to enter S-phase and to initiate DNA duplication, or to undergo
apoptosis (i.e. to die).

During G2-phase the synthesis of proteins needed to carry out cell division
occurs. This also provides a safety gap, allowing the cell to ensure that DNA
duplication is completed before mitosis [5]. The second checkpoint, so called
G2/M checkpoint, is located in the G2-phase. Passing through this checkpoint,
a cell decides whether it is ready to enter M-phase and if not it undergoes
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Fig. 2: Figures showing in detail the process of mitosis in two given cells (in-
dicated by a yellow frame) each dividing into two daughter cells in a
cellular colony.

apoptosis. During M-phase, at first, the cell’s nucleus divides into two (a process
known as mitosis) and later the whole cell splits into two (a process known as
cytokinesis).

We assume that during cytokinesis the parent cell ci of radius rci splits into
two daughter cells of radius 1

3√2
rci (symmetric division), chosen to preserve mass

conservation. Daughter cells are located at a distance of
rci
2 from the center of

the parent cell in a randomly chosen direction (see Fig. 2). At any time, each
cell of the model can be in any one of the different states: G1-phase, S-phase,
G2-phase, M-phase or G0-phase. The exact length of each cell cycle phase for a
respective cell is taken randomly from the interval [T ·(1−V ), T ·(1+V )], where
T is the average length of the phase, and V is the variance. Each cell during the
simulation has a certain probability Pci of being marked for programmed cell
death (apoptosis) at the nearest checkpoint. The exact value of Pci depends on
the particular cell type, e.g. in the example simulation presented in this paper
we assume that tumour cells have down-regulated their apoptotic pathways (i.e.
they are immortal).

2.3 Cell-cell interactions

The interactions between cells in the system are described by a modified Hertz
model as proposed in [6]. A decreasing distance between the centers of cells
results in an attractive interaction related to adhesive forces. Furthermore,
experiments suggest that cells have only limited compressibility which give rise
to repulsive interaction. The potential Vcicj between two adjacent cells ci and
cj of radius rci and rcj in this model is a combination of repulsive and attractive
forces and is given by:

Vcicj = (rci + rcj − dcicj )
5
2

1

5Ecicj

√
rcircj
rci + rcj

+Acicj .
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The first term of the above formula relates to repulsive interactions modelled
with the Hertz formula. Here dcicj is the distance between two cells and Ecicj
is computed with the use of Young moduli Eci and Ecj and the Poisson ratios
νci and νcj . The parameter values of Young moduli for each cell were randomly
chosen from range of 2100 ± 100 Pa in accordance with [7]. The Poisson ratio
is assumed to be equal to 0.33 as suggested in [8].

The second term Acicj of the potential formula relates to the adhesive forces
and is given by:

Acicj = ρmDcicj25kBT,

where kB is the Boltzmann constant, T is the temperature, Dcicj is the contact
area between cells ci, cj and ρm is the density of surface adhesion molecules in
the contact zone [9], which we assume is given for a specific cell type.

The potential function value for cell ci is given by the sum:

Vci =
∑

cj∈Bεci (ci)

Vcicj .

2.4 Cell movements

In this paper we discuss a simplified model where the motion Dci of cell ci
is based only on the potential function. The aforementioned formulation of
the potential function allows us to model two very important types of cell-
cell interactions. First of all adhesive forces which allow cells to be bound to
other cells or extracellular components of tissue (so called extracellular matrix
- ECM). Secondly repulsive forces which appear when cell cytoskeletons and
membranes are significantly stressed due to attractive forces and the decreasing
distance between cells’ centers.

Cells can change their position after each simulation step. The displacement
velocity vector is computed by deriving the potential function, i.e.:

Dci = −∇Vci .

The other mechanisms which might affect the dynamics of cell colonies (e.g.
chemotaxis, haptotaxis) are not currently treated within the present model. In
the general case cells will additionally tend to move with respect to gradient of
substances in their environment, see [10] for 2-D example.

3 Computational methods

This section presents details of the computational methods that we have used
to translate mathematical model into computer language. Large scale simula-
tions at tissue scale are both highly memory and computational demanding.
Therefore proposed computational framework was designed to work on novel
supercomputing architectures and parallelized from scratch. Computational al-
gorithms have been carefully selected to ensure high accuracy on the one hand
and efficient parallelization and high scalability on the other. Performance of
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the resulting computer model was tested in various setups, e.g. for different
domain decomposition scenarios. Consecutive steps of implementation, perfor-
mance analysis and optimization led us to the development of highly scalable
simulation environment on the IBM Blue Gene/Q supercomputer.

A schematic simulation diagram is presented in Scheme 1. Simulations are
made up of successive iterations, which computational nature will be described
next.

Scheme 1 Computational scheme of the simulation
iter ← 0
while iter ≤ max iter do

Step 1: Perform domain decomposition
Step 2: Build tree
Step 3a: Find exchange regions and initiate data exchange
for all local cells do

Step 4a: Find cell’s neighbours ← local data
Step 5a: Compute potential and density functions ← local data

end for
Step 3b: Wait until data exchange is finished
for all local cells do

Step 4b: Find cell’s neighbours ← remote data
Step 5b: Compute potential and density functions ← remote data

end for
for all local cells do

Step 6: Update cells’ cycle
Step 7: Compute forces and move cells to their new positions

end for
end while

3.1 Domain decomposition

Each iteration of the simulation begins with domain decomposition step (Step 1)
which distributes cells accross available parallel processes. We have selected the
most appropriate decomposition method based on the analysis of resulting load
balancing. We decided to use the dynamical decomposition algorithm based on
the concept of Peano-Hilbert space filling curves (PHSFC), which is particularly
useful in the case of systems of free moving objects.

One of the most important features of PHSFC method is that decomposition
domains assigned to parallel processes are topologically connected. The amount
of communication between adjacent processes is thereby minimized and most
of the calculations can be performed independently. Data exchange regions for
parallel processes, which can also be understood as borders of domain fragments,
are illustrated in Fig. 3.

3.2 Nearest neighbours searching

In consecutive iterations each cell sample the environment by identifying it’s
neighbours. This process can be very time consuming, especially when a naive
algorithmic approach is used. For instance the computational complexity of the
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Fig. 3: Halo exchange areas shown with colours in a 2-D simulation of a cellular
colony on 256 parallel MPI processes. Local cells of each process are
denoted by a navy blue colour. The colours of halo exchange cells have
been randomly chosen for each process.

Particle-Particle method is known to be of the order of O(N2) where N indicates
the total number of cells. Much more efficient methods are those based on tree
algorithms, with complexity of the order of O(NlogN). These methods have
been widely used in research areas such as computational cosmology [11] and
molecular dynamics [12]. We have used similar approach in this work. The tree
is built on each parallel process by an iterative procedure (Step 2). It starts from
a cubical root node containing all cells assigned to the process. This root node
is repeatedly subdivided into eight daughter nodes of half the side length each,
until one ends up with leaf nodes containing single cells. We consider only short-
distance interactions since each cell have finite neighbourhood sphere Bεci(ci).
Neighbours of each cell are found by traversing the tree starting from the leaf
upwards. In this way we are able to compute the most important characteristics
of the simulation: potential and density functions.

3.3 Communication and data exchange

One of the consequences of parallel realization is the need of communication
and data exchange, since neighbours of boundary cells might be stored on dif-
ferent processes. As can be seen from Scheme 1, potential and density function
computations, which are based on tree traversing algorithm, are divided into
two stages. Data exchange between processes is initiated (Step 3a) before the
first stage which is calculated only with the use of locally available data (Steps
4a and 5a). The second stage (Steps 4b and 5b) is computed when the remote
data from other processes is received which is ensured in Step 3b. With this
approach, we are able to overlap computations and communication, which have
an important impact on final scalability of the simulator.
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3.4 Potential and density functions

Having the information about the neighbours of each cell, the value of the po-
tential function can be easily determined. At this stage of the iteration we are
also able to calculate the approximate value of the density function for each
cell. This is achieved by adopting the concept of Smooth Particle Hydrodynam-
ics (SPH) [13] and it’s smoothing lengths. The SPH algorithm was originally
developed for fluid dynamics problems.

We assume that the value of the density function ρ̃ for given position ~p in
three-dimensional space can be computed as a sum over all cells ci in the system
with the use of following formula:

ρ̃(~p) '
∑
i=1,N

mciW (~p− ~pci , h),

where N denotes the number of cells in the system, mci is the mass of cell
ci, ~pci is its location and h is the parameter that defines the radius of the region
of influence for the approximation of the density function. Kernel function used
in our model is of the following form:

W (z, h) =
8

πh3

 1− 6( zh )2 + 6( zh )3, 0 ≤ z
h ≤ 0.5

2(1− z
h )3, 0.5 ≤ z

h ≤ 1
0, z

h > 1
.

Values of the kernel for cells further away than a distance of h from ~p are
exactly zero. In our approach we assume that h is equal to the radius of cells’
neighbourhood r. With this assumption we are able to calculate the value
of the density function at the location of each cell with the use of previously
determined neighbourhood. An example mapping of the density function on
spheres representing cells is shown on Fig. 4.

3.5 Cell cycle update and motion of cells

The development and dynamics of cell colony in our model is driven by two
previously described characteristics: potential and density functions. Each cell
undergo cell cycle (Step 6) which is controlled by density function. It means
that cells do not divide or grow if locally there is no sufficient space, i.e. if
the cell has no place to divide and is unable to push the neighbours, so as
to generate a needed place. In the particular case when cell division occurs,
the number of cells in the cellular system is increased accordingly. The next
iteration of the simulation starts with a new cell number. The motion of each
cell is on the other hand driven by the gradient of the potential function. Cells
move towards the direction computed from repulsive and adhesive interactions
with their neighbours (Step 7). In our model, we assume that all cells involved
in the simulation reside in a 3D finite computational box. If any cell moves out
of the box, it is removed from the simulation and not considered further.
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Fig. 4: Density of cells in a colony shown for clarity in 2-D (red - higher density,
blue - lower density). Proliferation occurs mainly in lower density areas.

4 Details of parallel implementation

Developing powerful applications for today’s largest supercomputing systems,
equipped with thousands and millions of computational cores, requires the use
of advanced parallel programming techniques and tools. In this section we
describe the effort we have made to optimize performance of described biological
computational framework on the IBM Blue Gene/Q system.

Maintaining extremely large number of processes with the use of flat MPI
programming model results in a very large memory overhead and significantly
reduces the scalability of applications. One of the most popular ways to over-
come these issues is to use a multi-level or hybrid parallelization model. In this
case we are using mixed MPI and OpenMP model. Depending on the size of
the biological system under consideration we can use from one to sixteen MPI
processes on each node of BG/Q. Each MPI process is further parallelized with
the use of OpenMP. Total number of threads per node in each simulation run
is equal to 64. In this way the SMT hardware support available on PowerPC
A2 chip is fully utilized.

Performance optimization on the IBM Blue Gene/Q system was carried out
iteratively. We have designed and executed a large scale benchmark run. We
have collected MPI trace data with the use of TAU performance analysis tool
[14]. Results of the analysis showed an unexpected imbalance between parallel
processes which was identified as the main bottleneck limiting code’s scalability.
Fig. 5 shows a detailed look at the computer program activities in a single
iteration step of the simulation, before and after optimization. Computational
activities are depicted in pink whereas the standby mode when processes are idle
is depicted in purple. At the end of each iteration step there is a synchronization
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Fig. 5: Visualization of the trace data collected during one simulation step.
The imbalance between working processes in the case of non-optimal
domain partitioning (left) is confronted with optimized domain parti-
tioning (right). Measurements and plots were obtained with the use of
TAU performance analysis tool [14].

barrier which is preceded by an exchange of data between processes (depicted
with yellow lines). As can be seen on the non-optimal version (left) some of the
processes are waiting on the barrier for other to finish their work.

We have identified that non-optimal load balancing between working pro-
cesses was the main performance and scalability bottleneck. The main obser-
vation was that computing potential function values is more time consuming
for cells which reside in high-density areas (e.g. inside of a developing solid
tumour). Such cells have more interactions with their neighbours and therefore
tree traversal is more complex. To solve this problem we have used weighted
PHSFC partitioning. Now each cell has a weight assigned to itself, which is
equal to the value of the density function computed in cell’s center. The trace
analysis of the optimized code is shown in Fig. 5 (right). As can be seen the
imbalance between processes was significantly reduced.

Fig. 6 presents applications scalability on the IBM Blue Gene/Q system.
The maximal computational partition used in this measurement consisted of 512
nodes (which is equivalent to approximately 100 TFlop/s). As can be seen we
achieved nearly linear speedup and we expect that this behaviour will remain
on larger computational partitions for bigger benchmark sizes.

5 Example of application

In this section we present an example simulation of early tumour growth ob-
tained with our model. Solid tumours are believed to start from a single mutated
cell that, due to subsequent divisions, becomes a multi-cellular spheroid (MCS)
[15]. In the subsequent development tumour adapts more complex structure
and looses its spherical symmetry. Here, the simulation size was reduced to
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Fig. 6: Scalability results: simulation of a large scale cellular colony on the IBM
Blue Gene/Q.

106. Thanks to this we were able to present visualizations of the underlying
phenomena. Visualizations of 109 size simulations are actually limited to the
analysis of specyfied smaller subregions of the tissue.

Prior to starting the simulation we develope a large colony consisting of 106

cells that represents a healthy tissue. At the beggining of simulation healthy
cells start to undergo the G1/S and G2/M checkpoints. We have chosen the
probability Pci of being marked for programmed cell death (apoptosis) to be
equal to 0.5. This ensures the homeostasis of the whole cell population, which
basically means that we obtain the stabilization of the cell number in the colony.
Also, at this point of the simulation we place a single tumour cell in G1 phase
in the middle of the tissue.

This initial tumour cell divides repeatedly following a set of rules and pro-
duces a cluster of cells. The system is updated repeatedly as the program runs
through a loop. During one time step, for each cell its phase is checked and, if
necessary, updated. A cell divides if it has sufficient space around it to place
its daughter cell. If there is no free place nearby, the cell can “push” up some
neighbouring cells in order to create an empty space for its daughter cell. The
exact spatial location for the new cell is computed using a potential function.

There is a significant differentiation between cancer and healthy cells in
presented simulation. Firstly, for healthy cells average cell cycle phases lengths
are: 11, 8, 4 and 1 hour for G1, S, G2 and M phases respectively. Cancer
cells have shorter G1 phase which is only 6 hours in average. Secondly, cancer
cells have greater ability to grow and divide in high-density neighbourhood than
healthy cells. Finally, the diseased cells produce slightly weaker adhesion forces.
We have been able to incorporate all those differences to the life cycles of single
cells thanks to the individual-based approach of our model. Chosen steps of
the simulation together with the description of their main characteristics are
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Fig. 7: Plots showing the simulation of growing solid tumour inside a healthy
tissue. Plot a) corresponds to the growing tumour after 80 days, with
2742 cancer cells. Plot b) corresponds to the growing tumour after 82.5
days, with 8091 cancer cells. Plot c) corresponds to the growing tumour
after 85 days, with 15626 cancer cells. Finally, plot d) corresponds to
the growing tumour after 90 days, with 37681 cancer cells. The whole
cell population in all time steps consisted of approximately 106 cells.

presented on Fig. 7.

6 Summary and future work

In this paper we presented a new powerful computational tool with a very wide
range of applications in the biomedical sciences. The proposed model can be
adapted to simulate many biological processes, such as: i) tumour development;
ii) vasculogenesis which is the process of blood vessel formation occurring by a
de novo production of endothelial cells, iii) angiogenesis which is the process of
new blood vessels formation from pre-existing vessels; iv) wound healing; v) the
development of biofilms, the complex structures of bacteria and other organisms
surrounded by a layer of organic and inorganic substances produced by these
micro-organisms; vi) tissue regeneration and many others.

In the future the proposed model will be extended by taking into account the
environment described in a continuous manner by partial differential equations.
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Further developments will include introduction of some intracellular kinetics
into each individual cell. Intracellular dynamics will be described with systems
of ODE and the whole model will gain genuine multi-scale character. First
work of that type, where authors describe intracellular dynamics of proteins
involved in regulation of adhesion one can find in [16]. Another extension of
the model could be the consideration of fibres of the extracellular matrix. It
is particularly important in case of solid tumour growth, cancer invasion and
cellular motility phenomena. Preliminary works on this topic can be found in
[17]. Such methodology will provide a new insight into processes occurring in
living organisms and multicellular systems enabling its better understanding
and control. It will make possible to simulate not only selected processes but
the whole phenomena. In particular, in case of cancer disease it will allow not
only the simulation of selected processes such as invasion and angiogenesis but
it will make possible to combine them into a one large multi-scale model of
cancer growth. Such virtual solid tumour may have a genuine impact on cancer
treatment.
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