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Pawińskiego 5a
02-106 Warszawa, Poland

mysz@icm.edu.pl

CRISTIAN MORALES RODRIGO

Institute of Applied Mathematics and Mechanics,

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
ul. Banacha 2,

02-097 Warszawa, Poland

cristianmatematicas@yahoo.com

MIROS LAW LACHOWICZ

Institute of Applied Mathematics and Mechanics,
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,

ul. Banacha 2,

02-097 Warszawa, Poland

lachowic@mimuw.edu.pl

MARK A.J. CHAPLAIN

The SIMBIOS Centre, Division of Mathematics, University of Dundee, 23 Perth Road,

Dundee, DD1 4HN, Scotland

chaplain@maths.dundee.ac.uk

In this paper we consider a mathematical model of cancer cell invasion of tissue (ex-

tracellular matrix). Two crucial components of tissue invasion are (i) cancer cell pro-
liferation, and (ii) over-expression and secretion of proteolytic enzymes by the cancer

cells. The proteolytic enzymes are responsible for the degradation of the tissue, enabling

the proliferating cancer cells to actively invade and migrate into the degraded tissue.
Our model focuses on the role of nonlocal kinetic terms modelling competition for space
and degradation. The model consists of a system of reaction-diffusion-taxis partial dif-

ferential equations, with nonlocal (integral) terms describing the interactions between
cancer cells and the host tissue. We first of all prove results concerning the local ex-

istence, uniqueness and regularity of solutions. We then prove global existence. Using

Green’s functions, we transform our original nonlocal equations into a coupled system of
parabolic and elliptic equations and we undertake a numerical analysis of this equivalent

system, presenting computational simulation results from our model showing the effect
of the nonlocal terms (travelling waves we observed have the shape closely linked to the

nonlocal terms). Finally, in the discussion section, concluding remarks are made and
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open problems are indicated.
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1. Introduction

In many biological and physical processes it is very important and highly relevant

to take into account nonlocal (i.e. other than point-wise) interactions. It is already

well known that elliptic equations (e.g. those describing chemotaxis) can be trans-

formed to equivalent nonlocal PDEs (that are related to the solutions of Poisson-like

equations (see Ref. 31)). However, in this paper our purpose is different and here

we seek to model certain biological processes which possess a nonlocal character.

The specific model we will develop in this paper refers to the process of tumour

invasion, but the method of investigation is general and therefore can be applied to

many other different processes.

The prognosis of a cancer is primarily dependent on its ability to invade the sur-

rounding tissue and spread to distant secondary sites i.e. metastasize. The crucial

process of invasion consists of four main steps: cancer cell adhesion (binding) to the

extracellular matrix (ECM), secretion of the matrix degrading enzymes (extracellu-

lar matrix degradation), the movement or migration of the cancer cells through the

extracellular matrix and finally cell proliferation. Cancer cells encounter a variety

of factors which may influence their directed migration at different stages in the

process of tumour invasion and metastasis. Such factors can promote the directed

movement of tumour cells by a mechanism termed haptotaxis. This is defined as

directed cellular locomotion in response to a concentration gradient of a bound, non-

diffusible molecule (cf. chemotaxis, where cells respond to a concentration gradient

of a diffusible chemical substance) such as those present within the components

of the extracellular matrix e.g. collagen, fibronectin, vitronectin13. Such adhesive

molecules can be present in spatially varying amounts within extracellular matrix.

A cell that is constantly making and breaking adhesions with such molecules will

move from a region of low concentration to an area where that adhesive molecule

is more highly concentrated.

In this paper we develop a new mathematical model of cancer cell invasion. The

model we propose is relatively simple, because rather than taking into account all the

very complex details of the invasion process, we concentrate on modelling nonlocal

interactions involved there. In order to achieve this we develop an integro-differential

equation model involving cancer cells and the extracellular matrix. The modelling

of the degradation of tissue is achieved through the incorporation of a spatial kernel

modelling the degradative interactions between cancer cells and the tissue. In the

following section we formulate and describe the mathematical model which consists
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of two coupled, nonlinear parabolic partial integro-differential equations. In Section

3 using the theory of linear semigroups we first of all prove results concerning the

local existence, uniqueness and regularity of solutions of our system of nonlinear

PDEs. In Section 4, we prove global existence, uniqueness and regularity of the

solutions. Using Green’s functions, in Section 5 we transform our original nonlocal

equations into a coupled system of parabolic and elliptic equations. We undertake

a numerical analysis of this equivalent system, presenting computational simulation

results from our model showing travelling waves of cancer cells degrading, invading

and replacing the tissue. We then compare our computational results in two distinct

cases: (i) the situation when the non-local effect is strong (i.e. the kernel support is

relatively big) and, (ii) the situation when the non-local effect is weak (i.e. the case

close to local one) and we discuss the differences between them. Finally, concluding

remarks are made in the Discussion section (Section 6).

2. The Mathematical Model

Cancer is a very complex and multi-faceted disease. Therefore there is a genuine

need for theoretical approaches and studies that may help to better understand

various aspects of this phenomenon. The literature concerning the mathematical

modelling of many of the key aspects of cancer growth, spread and treatment is

now quite extensive (see e.g. Refs. 6, 30).

Previous mathematical models for cancer invasion and metastasis can be found

in, for example, Refs. 2, 3, 15, 16, 23. Many of these papers examine how cancer

cells respond to ECM gradients via haptotaxis. The gradients are created through

the degradation of the extracellular matrix (ECM) by matrix degrading enzymes

(MDEs). In this paper, we will base our mathematical model on generic solid tumour

growth, which for simplicity we assume is at an avascular stage, focussing initially

solely on the interactions between the cancer cells and the surrounding tissue (ECM

together with the healthy cells). We develop a mathematical model consisting of

two coupled partial differential equations (PDEs) describing the evolution in time

and space of the system variables and including nonlocal (integral) terms. The key

physical variables are taken to be the cancer cell density (denoted by u) and the

tissue density (denoted by v). The focus of the model is on examining different key

features of the system separately i.e. cell random motility, haptotaxis, proliferation

and extracellular matrix degradation.

We now describe the way in which the cancer cell density u(t, x) and the tis-

sue density v(t, x) are involved in invasion and derive partial differential equations

governing the evolution of each variable.

(a) Cancer Cells:

The degradation of the extracellular matrix by cancer cell associated enzymes al-

lows cancer cells to invade surrounding tissues and gain access to the circulation.
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In addition, invasive cells in vivo adhere to surrounding ECM molecules via spe-

cific receptors and produce and secrete several types of matrix degrading enzyme

(MDE). The consequent digestion of ECM allows the cells to move into the spaces

thereby created and also sets up tissue gradients, which the cells then exploit to

move forwards4,5,12,24,25,37. Movement up concentration gradients of ECM has been

reported as a mechanism enabling movement through tissues by a variety of cell

types. Tumour cell motility toward high concentrations/densities of substratum-

bound insoluble components has been termed “haptotaxis”. Along with random

motility (cf. diffusion), we assume that these two key mechanisms govern cancer

cell migration and in our model, we model these phenomena using standard terms

(for details see: Ref. 14 and the references given therein).

Individual cells proliferating within the overall tumour cell mass have to compete

for nutrients, oxygen and space. So even cancer cells under some conditions are

suppressed in their proliferation e.g. cells in the interior of a solid tumour do not

divide as quickly as the cells on the surface. When describing cell growth we therefore

have to take into account this phenomenon. It is possible to do this by using a

logistic growth term, for instance. However, assuming ordinary logistic growth may

well be a crude over-simplification, since it means that proliferation of the cells

depends on the cells and the tissue density at given point, whereas the proliferation

probably actually depends on the cell and tissue density in a local neighbourhood.

The immediate surrounding of a cell influences its ability to divide and therefore

we include a nonlocal term8 describing a neighbourhood of a cell that inhibits its

proliferation in the model and we adopt the following proliferation term in our

model:

µ1 u(t, x)
(

1−
∫
Ω

k1,1(x, y)u(t, y) dy −
∫
Ω

k1,2(x, y) v(t, y) dy
)
, (2.1)

where Ω is a bounded domain in Rd (d ≥ 1) with smooth boundary ∂Ω, µ1 rep-

resents the cancer cell proliferation rate, and k1,1, k1,2 are given spatial kernels.

The kernels that are used in the present paper describe the short-range cell-cell

and cell-matrix interactions (through cell-cell signalling via inter-cellular junctional

complexes, and cellular protrusions e.g. filopodia) in a standard way. The precise

forms of the kernels are given in Section 5 (see Fig. 1). The terms

u(t, x)

∫
Ω

k1,1(x, y)u(t, y) dy (2.2)

and

u(t, x)

∫
Ω

k1,2(x, y) v(t, y) dy , (2.3)

describe the inhibition of cell proliferation caused by the density of surrounding

cancer cells and tissue respectively.
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Therefore, incorporating both the migration terms (random motility and hap-

totaxis) and the non-local proliferation terms, the equation describing the spatio-

temporal dynamics of the cancer cells reads

∂tu(t, x) = D∆u(t, x)−∇ ·
(
χ(v)u(t, x)∇v(t, x)

)
+µ1 u(t, x)

(
1−

∫
Ω

k1,1(x, y)u(t, y) dy −
∫
Ω

k1,2(x, y) v(t, y) dy
)

(2.4)

where χ(v) is the haptotaxis sensitivity function and D > 0 is the coefficient of

linear diffusion. In summary, the equation for cancer cells consists of linear diffusion

together with a standard haptotaxis transport term2,3,14,15,18,29 and a non-local

“source term” given by expression (2.1) i.e. a (parabolic) reaction-diffusion-taxis

equation. However, we note that different assumptions regarding cell migration may

lead to hyperbolic models as documented in 7, 20.

(b) Extracellular Matrix

We now turn attention to the extracellular matrix (ECM). This is known to contain

many macromolecules such as vitronectin, laminin and fibronectin which can be

degraded by several matrix degrading enzymes.

Since extracellular matrix (ECM) is “static”, we neglect any diffusion. We focus

solely on its degradation by the cancer cells. As mentioned above, matrix degra-

dation in vivo is achieved either through re-binding of MDE to receptors on the

cancer cell surface or by MDE-activation of other degrading components in the ma-

trix. This has the effect of producing a region of degradation that is restricted to

a small distance around the leading edge of the invading cancer cells. Therefore, in

our model we assume that cancer cells themsleves degrade the ECM upon contact

in a highly controlled and restricted manner, and use an integral term to capture

this, thus simplifying our model slightly by not explicitly modelling the MDE. We

also assume that ECM components are re-established or re-modelled by other cells

present in the tissue e.g. fibroblasts. These cells are assumed to be proliferating and

competing for space with the invasive cells in a manner similar to that describing

cancer cell proliferation. Thus, in the absence of cancer cells, we assume that the

extracellular matrix is remodelled in a logistic manner, representing a return to

the normal, healthy “uninvaded” state. On the other hand, the presence of cancer

cells leads to competition for space between the cancer cells and the ECM which

again we model by incorporating a crowding term into the logistic equation. Using

a modified logistic growth with rate constant µ2 to describe the ECM production,

and taking γ to represent the rate of degradation, we have the following equation
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for the extracellular matrix:

∂tv(t, x) = −γ v(t, x)

∫
Ω

k(x, y)u(t, y) dy

+µ2 v(t, x)
(

1−
∫
Ω

k2,1(x, y)u(t, y) dy −
∫
Ω

k2,2(x, y) v(t, y) dy
)
, (2.5)

where γ, µ2 are given non-negative parameters (ECM degradation rate and ECM

production rate, respectively) and k2,1, k2,2 and k are non-negatively defined func-

tions, kernels, once again describing the short-range cell-matrix interactions in a

standard way. The precise forms of the kernels are given in Section 5 (see Fig. 1).

The complete system of equations describing the interactions between the tu-

mour cells and extracellular matrix is therefore:

∂tu(t, x) = D∆u(t, x)−∇ ·
(
χ(v)u(t, x)∇v(t, x)

)
+u(t, x)µ1

(
1−

∫
Ω

k1,1(x, y)u(t, y) dy

−
∫
Ω

k1,2(x, y) v(t, y) dy
)

∂tv(t, x) = −γ v(t, x)
∫
Ω

k(x, y)u(t, y) dy

+v(t, x)µ2

(
1−

∫
Ω

k2,1(x, y)u(t, y) dy

−
∫
Ω

k2,2(x, y) v(t, y) dy
)
,

(2.6)

where D, µ1, µ2, γ (the cancer cell linear diffusion coefficient, cancer cell prolifera-

tion rate, ECM production rate and ECM degradation rate, respectively) are given

nonnegative parameters, k, ki,j (i, j = 1, 2) are given spatial kernels and χ is the

haptotaxis function that depends on v. We assume that

k , ki,j ∈ L∞(Ω× Ω) , ∇k ,∇k2,j ∈ (L∞(Ω× Ω))
d
, i, j = 1, 2 , (2.7)

k ≥ 0 ki,j ≥ 0 i, j = 1, 2, (2.8)

χ ∈ C2(R) , χ ≥ 0

and χ, χ′ are globally Lipschitz continuous.
(2.9)

Mathematically these are very weak assumptions and it is easy to see that the ker-

nels that we use in Section 5 do indeed satisfy (2.7) and (2.8).

The system (2.6) may be rewritten in the following compact version:

∂tu = D∆u−∇ ·
(
uχ(v)∇v

)
+ µ1u

(
1− k1,1 ~ u− k1,2 ~ v

)
,

∂tv = −γ v k ~ u+ µ2 v
(

1− k2,1 ~ u− k2,2 ~ v
)
,

(2.10)

where k ~ u(x) =
∫
Ω

k(x, y)u(y)dy.
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Remark 2.1. If instead of Ω we consider Rd or d−dimensional torus Td (periodic

boundary conditions), then it is natural to use the convolution ? instead of ~.

Boundary Conditions: We assume that there is no-flux of cancer cells on the

boundary of the domain,

uχ(v)
∂v

∂ν
−D∂u

∂ν
= 0 on ]0, T [×∂Ω , (2.11)

where ν is the outward normal vector to ∂Ω.

Initial Conditions: We consider the initial data(
u(0, x) , v(0, x)

)
=
(
u0(x) , v0(x)

)
. (2.12)

3. Local existence

The question of local existence was studied for a similar model in Ref. 26. However

it should be noted that the proof of local existence given here differs from the one

given in Ref. 26. We note that in Ref. 26 the author uses a classical setting, while

here we adopt the approach using the theory of semigroups.

Denote the norm of Lp(Ω) by
∣∣∣∣ . ∣∣∣∣

p
and the norm of the Sobolev space W l,p(Ω)

by
∣∣∣∣ . ∣∣∣∣(l)

p
. Let

p > d . (3.1)

For a fixed T > 0 let∣∣∣∣∣∣u∣∣∣∣∣∣
p

= sup
t∈[0,T ]

∣∣∣∣u(t)
∣∣∣∣
p
,

∣∣∣∣∣∣u∣∣∣∣∣∣(l)
p

= sup
t∈[0,T ]

∣∣∣∣u(t)
∣∣∣∣(l)
p
.

For simplicity of notation, and without loss of generality, we can assume

D = γ = µ1 = µ2 = 1 . (3.2)

We note that although the constants do not play a role in the proof, they do play

a role in the derivation of the model that is postulated here. We therefore stress

that although putting all the constants equal to one is useful for the proof, any

analysis of the model (e.g. computational simulations) must consider the relative

values of these parameters. Indeed, quantitative estimates of the parameters are

given in Section 5.

Now we introduce the new variable (see Ref. 18 and references therein)

w(t, x) =
u(t, x)

z(t, x)
, z(t, x) = exp

( v(t,x)∫
0

χ(s) ds
)
. (3.3)
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In the new variables the equation reads

∂tw = ∆w + χ(v)∇v · ∇w + w
(

1− k1,1 ~ (w z)− k1,2 ~ v
)

+χ(v)w vk ~ (w z)− χ(v)w v
(

1− k2,1 ~ (w z)− k2,2 ~ v
)

∂tv = −vk ~ (wz) + v(1− k2,1 ~ (wz)− k2,2 ~ v
) (3.4)

on ]0, T [×Ω, with the boundary conditions

∂w

∂ν
= 0 , (t, x) ∈ ]0, T [×Ω , (3.5)

and the initial data

(w, v)(0, x) = (w0, v0)(x) , x ∈ Ω . (3.6)

In order to show local existence of solutions to (3.4)–(3.6), we apply the theory

of linear semigroups. Let Ap denote the sectorial operator defined by

Apu = −∆u , u ∈ D(Ap) =

{
ξ ∈W 2,p(Ω) :

∂ξ

∂ν
= 0 on ∂Ω

}
.

Since Re (σ(Ap + 1)) ≥ 1 > 0, where σ(Ap + 1) is the spectrum of Ap + 1,

the operator Ap + 1 possesses the fractional powers (Ap + 1)β , β ≥ 0. Let Xβ
p =

D((Ap + 1)β). Then we have the following embedding properties Ref. 22 (Theorem

1.6.1)

Xβ
p ↪→W k,q(Ω) for k − d

q < 2β − d
p , q ≥ p > d

Xβ
p ↪→ Cκ(Ω) for 0 ≤ κ < 2β − d

p ,
(3.7)

where Cκ is the space of [κ]–times continuously differentiable functions with the

[κ]–order derivative satisfying the Hölder condition with exponent κ− [κ].

Since Ap + 1 is a sectorial operator then {e−t(Ap+1)}t≥0 defines an analytical

semigroup. Moreover for u ∈ Lp(Ω), we have (see Ref. 22)∣∣∣∣(Ap + 1)βe−t(Ap+1)u
∣∣∣∣
p
≤ ct−βe−δt

∣∣∣∣u∣∣∣∣
p
, (3.8)

where δ ∈ ]0, 1[ .

Let p > d be fixed. We denote by
∣∣∣∣ . ∣∣∣∣ the norm in W 1,p(Ω). Given T > 0, let

Y = C0
(

[0, T ] ; W 1,p(Ω)
)
, Y 1,∞ = C0

(
[0, T ] ; W 1,∞(Ω)

)
.

with the norms denoted by
∣∣∣∣∣∣ . ∣∣∣∣∣∣ and

∣∣∣∣∣∣ . ∣∣∣∣∣∣(1)

∞ , respectively.

Now the local existence theorem can be formulated:

Theorem 3.1. Let initial data (3.6) be such that (w0, v0) ∈ W 1,p(Ω)×W 1,∞(Ω).

If assumptions (2.7), (2.9) are satisfied, then there exists T > 0 such that problem

(3.4)–(3.6) has a unique solution (w, v) in Y × Y 1,∞ and

w ∈ C1
(

]0, T [ ;W 1,p(Ω)
)
∩ C0

(
]0, T [ ;W 2,p(Ω)

)
,

v ∈ C1
(

]0, T [ ;W 1,∞(Ω)
)
.

(3.9)
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Moreover, if w0 , v0 ≥ 0, then

w(t) ≥ 0 , v(t) ≥ 0 , t ∈ [0, T ] . (3.10)

Let Tmax be the maximal existence time. If there is a continuous function ω :

]0,∞[→ ]0,∞[ such that, for each τ > 0,∣∣∣∣w(t)
∣∣∣∣ ≤ ω(τ),

∣∣∣∣v(t)
∣∣∣∣(1)

∞ ≤ ω(τ) 0 < t < min
{
τ, Tmax

}
, (3.11)

then Tmax = +∞.

Proof. Let BR, for some R > 0, be the ball

BR =
{

(w, v) ∈ Y × Y 1,∞ :
∣∣∣∣∣∣w∣∣∣∣∣∣+

∣∣∣∣∣∣v∣∣∣∣∣∣(1)

∞ ≤ R
}

and J = (J1, J2) be the operator

J1(w, v) = e−t(Ap+1)w0 +
t∫

0

e−(t−s)(Ap+1)
(
χ(v)∇v · ∇w + 2w

−w k1,1 ~ (wz)− w k1,2 ~ v + χ(v)w vk ~ (w z)

−χ(v)w v
(
1− k2,1 ~ (w z)− k2,2 ~ v

))
ds

J2(w, v) = v0 +
t∫

0

(
− v k ~ (w z)

+v
(
1− k2,1 ~ (w z)− k2,2 ~ v

))
ds .

(3.12)

Fix R > K‖w0‖+ ‖v0‖(1)
∞ where

K := sup
t∈[0,T ]

‖e−t(Ap+1)‖L(W 1,p(Ω),W 1,p(Ω)).

We first prove that BR is invariant under J if T > 0 is sufficiently small. Using

(3.7)1 with k = 1, p = q and β ∈] 1
2 , 1 [ as well as (3.8) we obtain

∣∣∣∣J1

∣∣∣∣ ≤ K‖w0‖+ const

t∫
0

(t− s)−βe−δ(t−s)
(∣∣∣∣χ(v)

∣∣∣∣
∞

∣∣∣∣∇w∣∣∣∣
p

∣∣∣∣∇v∣∣∣∣∞
+2
∣∣∣∣w∣∣∣∣

p
+
∣∣∣∣w∣∣∣∣

p

∣∣∣∣k1,1 ~ (w z)
∣∣∣∣
∞ +

∣∣∣∣w∣∣∣∣
p

∣∣∣∣k1,2 ~ v
∣∣∣∣
∞

+
∣∣∣∣χ(v)

∣∣∣∣
∞

∣∣∣∣w∣∣∣∣
p

∣∣∣∣v∣∣∣∣∞(∣∣∣∣k ~ (w z)
∣∣∣∣
∞ + 1

+
∣∣∣∣k2,1 ~ (w z)

∣∣∣∣
∞ +

∣∣∣∣k2,2 ~ v
∣∣∣∣
∞

))
ds . (3.13)

Then by (2.7), assuming that (w, v) ∈ BR, we obtain∣∣∣∣∣∣J1(w, v)
∣∣∣∣∣∣ ≤ K‖w0‖+

const

1− β
T 1−β , (3.14)

where the constant indicated by ”const” depends on R.



10 Szymańska et al.

In the same manner, by (2.7) and (2.9), we obtain∣∣∣∣∣∣J2(w, v)
∣∣∣∣∣∣(1)

∞ ≤ ‖v0‖(1)
∞ + constT , (3.15)

where the constant indicated by ”const” depends on R. Hence we can choose T

sufficiently small to assert that J(BR) ⊂ BR.

Similar arguments show that∣∣∣∣∣∣J1(w1, v1)− J1(w2, v2)
∣∣∣∣∣∣ ≤ const

1− β
T 1−β

(∣∣∣∣∣∣w1 − w2

∣∣∣∣∣∣+
∣∣∣∣∣∣v1 − v2

∣∣∣∣∣∣(1)

∞

)
(3.16)

and∣∣∣∣∣∣J2(w1, v1)− J2(w2, v2)
∣∣∣∣∣∣(1)

∞ ≤ constT
(∣∣∣∣∣∣w1 − w2

∣∣∣∣∣∣+
∣∣∣∣∣∣v1 − v2

∣∣∣∣∣∣(1)

∞

)
, (3.17)

where the constants indicated by ”const” depend on R.

Hence, given T small enough we obtain the contractivity of the operator J in

BR. Thus local existence and uniqueness follow.

Now, we proceed with the proof of (3.9). Let t0 ∈]0, T [ fixed, then (see Ref. 22,

Lemma 3.5.2) entails

d

dt
w(t0, ·) ∈W 1,p(Ω).

Next, we rewrite the first equation of (3.4) in the following form

−∆w − b · ∇w + w = f − ∂w

∂t
,

where b = χ(v)∇v ∈ (L∞(Ω))N and

f = w
(

2−k1,1~(wz)−k1,2~v)+χ(v)wv(k~(wz)−1+k2,1~(wz)+k2,2~v
)
∈ Lp(Ω).

Therefore, from elliptic estimates we get w(t0) ∈W 2,p(Ω), ending the proof of (3.9).

From (2.7), (2.9) and the regularity of our solutions we obtain(
1−k1,1~(wz)−k1,2~v+χ(v)v(k~(wz)−1+k2,1~(wz)+k2,2~v)

)
∈ L∞(]0, T [×Ω).

Consequently the non–negativity of w follows from maximum principle arguments.

Next we observe that the equation for v can be written as

vt = vf,

with f = 1− k ~ (wz)− k2,2 ~ v − k2,1 ~ (wz). Thus,

v(x, t) = v0(x)e
∫ t
0
f(x,s)ds,

concluding the non–negativity of v.

The last statement follows by prolongation arguments (see Ref. 22, Theorem

3.3.4). This finishes the proof.
�
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Corollary 3.1. Let (u0, w0) ∈W 1,p(Ω)×W 1,∞(Ω). Assume (2.7), (2.9) then there

exists T > 0 such that the problem (2.10), (2.11), (2.12) has a unique solution

u ∈ C0
(

[0, T ] ;W 1,p(Ω)
)
∩ C1

(
]0, T [ ;W 1,p(Ω)

)
∩ C0

(
]0, T [ ;W 1,∞(Ω)

)
,

v ∈ C0
(

[0, T ] ;W 1,∞(Ω)
)
∩ C1

(
]0, T [ ;W 1,∞(Ω)

)
.

Proof. Since u0 ∈ W 1,p(Ω) and v0 ∈ W 1,∞(Ω) then w0 ∈ W 1,p(Ω). Therefore, we

can apply Theorem 3.1. Finally, taking into account that u = wz, the corollary

easily follows. �

4. Global existence

It is well known that for various systems describing cell motions and chemotaxis

(see 29 chapter 5 and references given therein), the solutions may blow up in finite

time. Here we prove that the solutions to the nonlocal equation (2.6) exist globally

in any space dimension d without imposing any kind of smallness conditions on the

initial conditions.

In this section we assume that (u, v) is a nonnegative solution to Eq. (2.6), (2.11),

(2.12) given by Theorem 3.1 — see Remark 3.1 — on the time interval [0, T ], with

T > 0. We start with some simple lemmas that provide a priori estimates.

Lemma 4.1.

v(t, x) ≤ v0(x) eT , t ∈ [0, T ] , x ∈ Ω . (4.1)

Proof. The statement is a consequence of the nonnegativity of u and v, the as-

sumption (2.8) as well as the inequality

∂tv ≤ v , (4.2)

that follows from Eq. (2.6). �

Lemma 4.2. ∣∣∣∣∣∣u∣∣∣∣∣∣
1
≤
∣∣∣∣u0

∣∣∣∣
1
eT ,

∣∣∣∣∣∣w∣∣∣∣∣∣
1
≤
∣∣∣∣u0

∣∣∣∣
1
eT . (4.3)

Proof. Integrating Eq. (2.6)1 we obtain

∣∣∣∣u(t, . )
∣∣∣∣

1
=

∫
Ω

u(t, x) dx ≤
∫
Ω

u0(x) dx+

t∫
0

∫
Ω

u(t′, x) dxdt′

∣∣∣∣u0

∣∣∣∣
1

+

t∫
0

∣∣∣∣u(t′, . )
∣∣∣∣

1
dt′ . (4.4)

Hence, by Gronwall’s lemma ∣∣∣∣∣∣u∣∣∣∣∣∣
1
≤
∣∣∣∣u0

∣∣∣∣
1
eT . (4.5)

Taking into account the fact that w = u
z and z−1 ≤ 1 yields (4.1).
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�

Lemma 4.3. We have ∣∣∣∣∣∣v∣∣∣∣∣∣(1)

∞ ≤ c1

(∣∣∣∣v0

∣∣∣∣(1)

∞ + c2

)
, (4.6)

where the constants c1 and c2 depend on T ,
∣∣∣∣u0

∣∣∣∣
1

and
∣∣∣∣v0

∣∣∣∣
∞.

Proof. By Eq. (3.4)2 we have

∂t∇v = −∇v k ~ u− v (∇1k)~ u

+∇v
(

1− k2,1 ~ u− k2,2 ~ v
)

+v
(

(∇1k2,1)~ u− (∇1k2,2)~ v
)
, (4.7)

where by ∇1 we indicate the gradient with respect to the first variable x.

Therefore, by (2.7), we obtain

|∇v(t, x)| ≤ |∇v0(x)|+ const

t∫
0

∣∣∣∣v(s)
∣∣∣∣
∞

(∣∣∣∣u(s)
∣∣∣∣

1
+
∣∣∣∣v(s)

∣∣∣∣
∞

)

+const

t∫
0

|∇v(s, x)|
(

1 +
∣∣∣∣u(s)

∣∣∣∣
1

+
∣∣∣∣v(s)

∣∣∣∣
∞

)
.+
∣∣∣∣v0

∣∣∣∣
∞

)
. (4.8)

By (4.1) and (4.3) it follows

|∇v(t, x)| ≤
(
|∇v0(x)|+ constTeT

∣∣∣∣v0

∣∣∣∣
∞

(∣∣∣∣u0

∣∣∣∣
p

+
∣∣∣∣v0

∣∣∣∣
∞

))
× exp

(
constT eT (1 +

∣∣∣∣u0

∣∣∣∣
p

+
∣∣∣∣v0

∣∣∣∣
∞

)
. (4.9)

This completes the proof. �

Lemma 4.4. We have ∣∣∣∣∣∣w∣∣∣∣∣∣ ≤ c3
∣∣∣∣w0

∣∣∣∣ , (4.10)

where the constants c3 depends on T ,
∣∣∣∣u0

∣∣∣∣
1

and
∣∣∣∣v0

∣∣∣∣
∞.

Proof. Estimates similar to that in (3.13) show

∣∣∣∣w(t)
∣∣∣∣ ≤ const t−βe−δt

∣∣∣∣w0

∣∣∣∣
p

+ const

t∫
0

(t− s)−βe−δ(t−s)
∣∣∣∣w∣∣∣∣

×

(
1 +

∣∣∣∣χ(v)
∣∣∣∣
∞

∣∣∣∣∇v∣∣∣∣∞ +
∣∣∣∣k1,1 ~ u

∣∣∣∣
∞ +

∣∣∣∣k1,2 ~ v
∣∣∣∣
∞

+
∣∣∣∣v∣∣∣∣∞ ∣∣∣∣χ(v)

∣∣∣∣
∞

(∣∣∣∣k ~ u∣∣∣∣∞ + 1

+
∣∣∣∣k2,1 ~ u

∣∣∣∣
∞ +

∣∣∣∣k2,2 ~ v
∣∣∣∣
∞

))
ds . (4.11)
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Thus, by (2.7)

∣∣∣∣w(t)
∣∣∣∣ ≤ const t−β + const

t∫
0

(t− s)−β
∣∣∣∣w(s)

∣∣∣∣
×

(
1 +

(∣∣∣∣v(s)
∣∣∣∣(1)

∞ + χ0

)∣∣∣∣v(s)
∣∣∣∣(1)

∞ +
∣∣∣∣u(s)

∣∣∣∣
1

+
∣∣∣∣v(s)

∣∣∣∣
∞

+
(∣∣∣∣v(s)

∣∣∣∣
∞ + χ0

)∣∣∣∣v(s)
∣∣∣∣
∞

(∣∣∣∣u(s)
∣∣∣∣

1
+ 1 +

∣∣∣∣v(s)
∣∣∣∣
∞

))
ds . (4.12)

By Theorem 7.1.1 of Ref. 22 as well as (4.1), (4.3) and (4.6) we conclude that∣∣∣∣w∣∣∣∣ ≤ const t−β , (4.13)

for 0 < t ≤ T . Finally, taking into account the local existence and (4.13) we finish

the proof. �

By (4.6), (4.10) and Theorem 3.1 we obtain the main global result:

Theorem 4.1. Let initial data (3.6) be such that (w0, v0) ∈ W 1,p(Ω)×W 1,∞(Ω).

If assumptions (2.7), (2.9) are satisfied, then for any T > 0 problem (3.4)–(3.6)

has a unique solution (w, v) in Y × Y 1,∞ and

w ∈ C1
(

]0, T [ ;W 1,p(Ω)
)
∩ C0

(
]0, T [ ;W 2,p(Ω)

)
,

v ∈ C1
(

]0, T [ ;W 1,∞(Ω)
)
.

(4.14)

Moreover, if w0 , v0 ≥ 0, then

w(t) ≥ 0 , v(t) ≥ 0 , t ∈ [0, T ] . (4.15)

�

Arguing as in the previous section we have:

Corollary 4.1. Let (u0, w0) ∈ W 1,p(Ω)×W 1,∞(Ω). Assume (2.7), (2.9) then for

every T > 0 the problem (2.10), (2.11), (2.12) has a unique solution

u ∈ C0
(

[0, T ] ;W 1,p(Ω)
)
∩ C1

(
]0, T [ ;W 1,p(Ω)

)
∩ C0

(
]0, T [ ;W 1,∞(Ω)

)
,

v ∈ C0
(

[0, T ] ;W 1,∞(Ω)
)
∩ C1

(
]0, T [ ;W 1,∞(Ω)

)
.

Remark 4.1. The regularity of the solutions is strictly related to the regularity of

the initial conditions and the regularity of the kernels. In particular, under suitable

regularity assumptions on the kernels and on the initial data, we may obtain for

any T > 0

w ∈ C0
(

[0, T ];W 1,p(Ω)
)
∩ C1,2

(
]0, T [×Ω

)
,

v ∈ C0
(

[0, T ];C1+α(Ω)
)
∩ C1

(
]0, T [ ;C1+α(Ω)

)
,

(4.16)

for 0 < 1 + α < 2β − d/p.
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5. Numerical Analysis and Computational Simulations

In this section we undertake computational simulations of a non-dimensionalised

version of the system of non-local equations (2.6) describing cancer cell invasion of

the ECM. We recall that in one space dimension, the system of equations (2.6) can

be written as:

∂tu(t, x) = D∂2
xu(t, x)− ∂x

(
χ(v)u(t, x)∇v(t, x)

)
+u(t, x)µ1

(
1−

∫
Ω

k1,1(x, y)u(t, y) dy −
∫
Ω

k1,2(x, y) v(t, y) dy
)

∂tv(t, x) = −γ v(t, x)
∫
Ω

k(x, y)u(t, y) dy

+v(t, x)µ2

(
1−

∫
Ω

k2,1(x, y)u(t, y) dy −
∫
Ω

k2,2(x, y) v(t, y) dy
)
,

(5.1)

where D, µ1, µ2, γ (the cancer cell linear diffusion coefficient, cancer cell prolifera-

tion rate, ECM production rate and ECM degradation rate, respectively) are given

nonnegative parameters, k, ki,j (i, j = 1, 2) are given spatial kernels and χ is the

haptotaxis function that depends on v. Ω is now the interval [0, L] for some L > 0.

Without loss of generality, we now assume that k1,2 = k2,2 and k2,1 = k1,1 and

we can now rewrite system (5.1) as

∂tu = D∂2
xu− ∂x

(
uχ(v)∂xv

)
+ µ1u

(
1− k1,1 ~ u− k2,2 ~ v

)
∂tv = −γ v k ~ u+ µ2 v

(
1− k1,1 ~ u− k2,2 ~ v

)
,

(5.2)

The above system of integro-partial-differential equations presents challenges

from a numerical analysis point of view. In order to make progress in this direction

and to enable the implementation of an efficient numerical scheme, we adopt the

approach taken in Refs. 10, 11, 21.

We let p ≥ 1 and fix t ∈ [0, T ]. Then for each g(t, . ) ∈ Lp(Ω) we consider the

linear operator G : Lp(Ω) → W 2,p(Ω), where G(g) is the unique solution to the

equation

−∂2
xf + θ2f = θ2g in Ω ,

∂f

∂ν
= 0 on ∂Ω ,

(5.3)

for some θ ∈ R > 0. It is then straightforward to see that40

f(x) = G(g)(x) =

∫
Ω

k(x, y)g(y) dy. (5.4)

Using this approach, it is now easily seen that with k1,1, k2,2 and k defined by

equations (5.3)–(5.4) for θ = λ1,1, λ2,2, λ respectively, our system (5.1) can be
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re-written as:

∂tu(t, x) = D∂2
xu(t, x)− ∂x

(
χ(v)u(t, x) ∂x v(t, x)

)
+ µ1u(t, x)

(
1− f1,1(t, x)− f2,2(t, x)

)
∂tv(t, x) = −γ v(t, x)f(t, x) + µ2v(t, x)

(
1− f1,1(t, x)− f2,2(t, x)

)
λ2u(t, x) = −∂2

xf(t, x) + λ2f(t, x)

λ2
1,1u(t, x) = −∂2

xf1,1(t, x) + λ2
1,1f1,1(t, x) ,

λ2
2,2v(t, x) = −∂2

xf2,2(t, x) + λ2
2,2f2,2(t, x) .

(5.5)

The above set of equations is now a system of coupled elliptic-parabolic PDEs

which can be solved using standard numerical techniques (in our case finite ele-

ments). In order to close the system, we assume no-flux boundary conditions i.e.

uχ(v) ∂xv −D∂xu = ∂xf = ∂xf1,1 = ∂xf2,2 = 0 , on ]0, T [×∂Ω . (5.6)

and initial data: (
u(0, x) , v(0, x)

)
=
(
u0(x) , v0(x)

)
, (5.7)

where

u0(x) = exp(
−x2

ε
), x ∈ Ω and ε = 0.01 > 0,

v0(x) = 1, x ∈ Ω. (5.8)

Before proceeding with our computational simulations, we state the following

corollary:

Corollary 5.1. The system of equations (5.5) with boundary conditions (5.6) and

initial data given by (5.7), (5.8) has a unique solution

(u, v) ∈ C0
(

[0, T ]× [0, L]
)
∩ C∞

(
]0, T [×]0, L[

)
, (5.9)

for any T > 0.

Proof Keeping in mind the properties of the operator G, we may repeat the ar-

guments of Section 3 and obtain the local existence and uniqueness theorem. The

additional regularity comes from a standard parabolic and elliptic regularization.

In order to obtain global existence we repeat the arguments before Lemma 4.2 and

we also need the following lemma:

Lemma 5.1. The solution given by Corollary 5.1 is such that∣∣∣∣∣∣u∣∣∣∣∣∣
2
≤ c4, (5.10)

where c4 depends on T and
∣∣∣∣w0

∣∣∣∣
2
.

Proof. Following the notation of Section 3 we have

z∂tw = ∇(z∇w) + zw
(

1− k1,1 ~ (wz)− k1,2 ~ v
)

+zχ(v)wvk ~ (wz)− zχ(v)wv
(

1− k2,1 ~ (wz)− k2,2 ~ v
)
. (5.11)
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Multiplying Eq. (5.11) by w and itegrating in the space we get

1

2

d

dt

∫
Ω

(zw2) =
1

2

∫
Ω

zχ(v)w2vt + zw2
(

1− k1,1 ~ (wz)− k1,2 ~ v
)

+zχ(v)w2vk ~ (wz)− zχ(v)w2v
(

1− k2,1 ~ (wz)− k2,2 ~ v
)
. (5.12)

Taking into account (4.1), (4.3) and (2.7), (2.9) we obtain

d

dt

∫
Ω

zw2 ≤ −
∫
Ω

z|∇w|2 + c

∫
Ω

zw2. (5.13)

This yields ∫
Ω

zw2 ≤ const, (5.14)

where the constant ”const” depends on T and
∣∣∣∣z0w

2
0

∣∣∣∣
2

and the statement of Lemma

5.1 follows.
�

By Lemma 5.1 and by the Sobolev Embedding Theorem (see Ref. 1), we may

repeat the arguments from Section 4 and obtain the statement of Corollary 5.1.
�

We are now in a position to solve our system of equations (5.5), (5.6), (5.7) nu-

merically. In order to do this, we first of all non-dimensionalise the equations. The

variables and parameters in the system of equations and their associated bound-

ary conditions are transformed into dimensionless quantities using the following

reference variables:

(1) a reference length scale, L, (e.g. the maximum invasion distance of the cancer

cells at this early stage of invasion 0.1− 1cm),

(2) a reference time unit, τ =
L2

Dc
, where Dc is a reference chemical diffusion coeffi-

cient e.g. 10−6cm2s−1 (see Ref. 9) Therefore, we deduce that τ varies between

104 − 106sec.

(3) a reference tumour cell density u0, extracellular matrix density v0 (where u0,

v0 are appropriate reference variables).

For the numerical calculations presented here, we assume χ(v) to be a constant

χ, and we thus define the non-dimensional variables:

t̃ =
t

τ
, x̃ =

x

L
, ũ =

u

u0
, ṽ =

v

v0
.

and new parameters via the following scaling:
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Fig. 1. Plot of the finite kernel (Green’s function) on [0,1], y = 0.5, for the two cases λ = 1, 10.

D̃ =
D

Dc
, χ̃ = χ

v0

Dc
,

µ̃1 = µ1τ, µ̃2 = µ2τ, γ̃ = γu0v0τ.

Henceforth we omit the tildes for notational simplicity.

As was mentioned previously, we work on a one-dimensional domain [0, L]. In

this case, it is straightforward to calculate explicitly the Green’s Function (and

hence the spatial kernel) for our problem (see, for example, Ref. 40). Thus we have

k(x; y) =


λ coshλx coshλ(L− y)

sinhλL
, 0 < x < y

λ coshλ(L− x) coshλy

sinhλL
, y < x < L

A plot of the above kernel for different values of λ is given in Figure 1 and we

note the role played by the parameter λ — the smaller λ is, the greater the nonlocal

effect and, conversely, if λ → ∞ the nonlocal term becomes local. Therefore, the

quantity
1

λ
can be considered as a measure of the spatial scale over which the
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nonlocal term acts. Thus for system (5.5),
1

λ
is a measure of the size of the spatial

domain over which degradation acts,
1

λ1,1
is a measure of the size of the spatial

domain over which cancer cells compete with other cells for space/resources, and
1

λ2,2
is a measure of the size of the spatial domain over which components or cells

of the ECM compete with others for space/resources.

Before presenting the results of our computational simalutions, we first of all

give estimates for as many of the parameters of the model as is possible.

5.1. Estimation of Parameters

Whenever possible parameter values are estimated from available experimental

data. However, given the large number of parameters in the model to be deter-

mined, it is perhaps not surprising that several remain unquantified. In the cases

where no experimental data could be found, parameter values were chosen to give

the best qualitative numerical simulation results. This is in line with previous papers

successfully simulating tumour invasion and angiogenesis2,28.

Estimation of the Reference Diffusion Coefficients Dc, D

We introduce Dc a reference chemical diffusion coefficient e.g. Dc ∼ 10−6cm2s−1,9.

Estimates for the cell random motility coefficient vary depending on the cell type:

3×10−9cm2s−1 - 5.9×10−11cm2s−1 for epidermal cells34; (7.1±2.7)×10−9cm2s−1

for endothelial cells36; also, Bray estimated the random motility coefficient of animal

cells to be ∼ 5×10−10cm2s−1,9. In light of these data, our choice for the cell random

motility coefficient D will vary betweeen 10−9cm2s−1 and 10−11cm2s−1, and so our

nondimensional value Dc ∈ [10−5, 10−3].

The haptotactic coefficient χ

Stokes et al. estimated the chemotaxis sensitivity of ECs migrating in a culture

containing αFGF, to be 2600cm2s−1M−1 (see Ref. (36)). In the absence of reliable

empirical data, we chose the haptotaxis sensitivity χ to be in the range from 2.5×
10−3 to 2.5×10−1 cm2s−1M−1. Therefore, considering the fact that the vitronectin

blood plasma concentration is around 4µM ,17 leads to a dimensionless estimate of

the haptotaxis coefficient χ in the range between 0.001 and 1. A value of v0 vary

between 0.38 × 10−9M and 0.38 × 10−12M what is consistent with experimental

measurements.

Proliferation rate constant µ1

Yu et al. estimated the doubling time of human epidermoid carminoma cells (HEp3)

from in vitro proliferation experiments time to be 24h38. By taking the proliferation
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rate as the reciprocal of the cell-cycle time we get µ̃1 ∼ 0.042h−1. For our numerical

simulations we will choose the proliferation rate to be between 0.02h−1 and 0.72h−1,

and thus obtain the dimensionless parameter µ1 in the range from 0.05 to 2.

Parameters λ, λ1,1, λ2,2

As noted previously, 1/θ, with θ = λ, λ1,1, or λ2,2 can be considered as a measure

of the spatial scale over which the nonlocal term acts. In our simulations, we used

values of λ1,1 ∈ [1, 10] in dimensionless units. Although the cancer cells have rather

non-regular shape we estimate that an average diameter of a cancer cell is equal to

10 microns. The above range for λ1,1 is therefore equivalent to the assumption that

the non-local effect varies from 1 cell diameter to up to 10 cell diameters. Similarly

we used values of λ2,2 ∈ [10, 50] and λ ∈ [1, 10000].

Remaining Parameters

Not all parameters in the model were able to be estimated. Therefore, we chose these

remaining parameter values in line with previous models of cancer invasion15,16.

A summary of all parameter value ranges used in the computational simulations

is given in the table below:

Parameter Description Value

D cell diffusion coefficient [10−5, 10−3]

χ haptotactic sensitivity [10−3, 1]

µ1 proliferation rate of cancer cells [5 · 10−2, 2]

µ2 matrix re-modelling rate [1.5 · 10−1, 2.5]

γ matrix degrading rate [1, 2 · 10]

λ1,1 cancer cell non-local effect [1, 10]

λ2,2 ECM non-local effect [1, 50]

λ degradation non-local effect [1, 10000]

5.2. Computational Simulations

We now present some computational results from numerical simulations of the sys-

tem of equations (5.5) which was solved numerically using the Femlab finite element

package (Lagrange quadratic elements were used as basis functions and the back-

ward Euler time-stepping method was implemented to integrate the equations).

Figures 2 and 3 show the computational simulation results where the parameters

λ1,1, λ2,2 and λ have the following values: λ1,1 = 10, λ2,2 = 50 and λ = 10000. The

choice of parameter λ = 10000 means in effect that the degradation term of the

second equation of (5.5) is almost local i.e. ≈ −γuv. We chose this value for λ in
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order to focus on the effect of nonlocal proliferation. As can be seen from the plots

in figures 2 and 3, the initial profile of cancer cells develops into a travelling wave

which invades the ECM, degrading the ECM as it invades. Eventually all the ECM

is degraded and we are left with the cancer-only steady state of (1, 0).

Figures 4 and 5 show the computational simulation results where the parameters

λ1,1, λ2,2 and λ have the following values: λ1,1 = 1, λ2,2 = 5 and λ = 10000. As

can be seen from both sets of plots, once again the initial profile of cancer cells

develops into a travelling wave which invades the ECM, degrading the ECM as it

invades. However, in this case we note that there is an ”overshoot” in the cancer

cell density at the front of the travelling wave, where the maximum cancer cell

density reaches a value of approximately 1.5. This is due to the influence of the

nonlocal proliferation terms whose effects have been enhanced due to the choice

of parameters λ1,1 = 1, λ2,2 = 5. Once again, the wave of cancer cells invades the

ECM, degrading the ECM as it invades. Eventually all the ECM is degraded and

we are left with the cancer-only steady state of (1, 0). We note that in this case, the

cancer cells penetrate less deeply into the ECM - at t = 60 the leading edge of the

cancer cells has reached the point just beyond x = 0.7, while in figure 2 at t = 60

the leading edge of the cancer cells has reached approximately x = 0.625.

The results presented in figures 2 , 3 and 4 , 5 illustrate the effect of the nonlocal

proliferation terms. The cancer cells degrade the surrounding ECM and then invade

this degraded region of tissue by a combination of diffusion and haptotaxis. This is

seen as the travelling wave solution connecting the cancer-free state with the cancer-

only state. In the model we assume that cancer cells are competing for nutrient (e.g.

oxygen) with other cells at different spatial locations. In the one-dimensional domain

considered here this means that the cancer cells competing both with those cells in

front and with those cells behind. In an invasion of a region of tissue where there were

no cancer cells, those cells at the front of the invasion wave (mathematically, at the

point where the travelling front is steepest) will find there are essentially no cancer

cells ahead of them. This means that essentially these cells are only in competition

with the cells behind. This gives them an “invasive advantage” and allows the cell

numbers there to get above the carrying capacity level (the maximum level that

can be sustained in the long term), but only in the neighbourhood of the front of

the invading cells (see Ref. 21, where a different, simpler model was considered). As

a result we see an ”overshoot” in the front profile.

6. Discussion

In this paper we have presented a mathematical model of cancer cell invasion of

tissue and investigated the effect of nonlocal reaction kinetics. The model was for-

mulated as a system of partial differential equations (integro-differential equations)

with the nonlocal terms modelling competition for nutrient between the cancer

cells and tissue re-modelling. Additionally, we incorporated a nonlocal degradation

term. Certain important analytical results were proved and computational results



Nonlocal cancer invasion model 21

Fig. 2. Plot showing profile of the density of cancer cells at times t = 10, 20, 30, 40, 50, 60.

Figure shows the travelling wave of invasion of cancer cells invading the ECM. Parameters
λ1,1 = 10, λ2,2 = 50, λ = 10000, D = 0.001, χ = 0.075, µ1 = 1, µ2 = 0.15 and γ = 1.

Fig. 3. Plot showing the corresponding profile of the density of ECM at times t =

10, 20, 30, 40, 50, 60. Figure shows ECM being degraded by the cancer cells as they invade.
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Fig. 4. Plot showing profile of the density of cancer cells at times t = 10, 20, 30, 40, 50, 60. Figure

shows the travelling wave of invasion of cancer cells invading the ECM. Parameters λ1,1 = 1, λ2,2 =
5, λ = 10000, D = 0.001, χ = 0.075, µ1 = 1, µ2 = 0.15 and γ = 1.

Fig. 5. Plot showing the corresponding profile of the density of ECM at times t =
10, 20, 30, 40, 50, 60. Figure shows ECM being degraded by the cancer cells as they invade.
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of numerical simulations of our model were given.

In Section 3 we presented a mathematical analysis of the model and proved the

local existence results for the solution of our equations using the theory of linear

semigroups. In Section 4 we proved that the solutions to the nonlocal equations

exist globally and are unique in any space dimension d without imposing any kind of

smallness conditions in the initial conditions. Finally, we showed that the regularity

of the solutions is strictly related to the regularity of the initial conditions and the

regularity of the kernels and proved some results related to this.

In Section 5 we presented the computational results of numerical simulations

of our basic model. These simulations showed the effect of the nonlocal terms21.

Travelling waves of invading cancer cells were observed, and the shape of the trav-

elling wave was closely linked to the nonlocal terms and the size of the parameters

λ, λ1,1, λ2,2. The invasive waves were either ”regular” or had an ”overshoot” at the

front, indicating a region of high cancer cell density. From a biological perspective

these results indicate the important role that competition for nutrient (e.g. oxygen)

and space may play during cancer cell invasion. The numerical simulations indicate

that cancer cells at the leading edge of an invasive front are only in competition

with the cells behind, giving them an “invasive advantage” over cells futher behind.

This may have implications for the depth of penetration into the ECM.

The numerical simulations that we have carried out suggest various interesting

open mathematical and analytical questions that will be studied in future work,

such as a rigorous proof of the existence of travelling waves and the derivation of

an upper bound for the wave speed.

Future work will also consider extending the current model. Firstly, we will

consider a more realistic treatment of the cancer cell random motility function

D(·). Although in this paper we have considered this to be a constant (i.e. linear

diffusion), from a physical point of view, migration of the cancer cells through the

ECM is more like movement in a porous medium and so we may consider the cell

random motility to be a function of the cancer cell density i.e.D ≡ D(u). Specifically

D(u) = uα, α ≥ 1.

Recent experimental work39 has shown that the cancer cell motility also de-

pends on ECM density (haptokinesis), i.e. D ≡ D(v), with a possible form27

D(v) = D0v(K2 + v2)−1 with parameters D0 ≥ 0 and K > 0, accounting for

the fact that cancer cells cannot move in the absence of ECM (D = 0 when v = 0),

have reduced movement when the ECM becomes denser, and have maximal rate of

random motility at some intermediate value of ECM.

Finally, we may also consider extending the current model to explicitly include

the effect of matrix degrading enzymes14,15,16. In this instance, the cancer cell

motility may also depend upon the matrix degrading enzyme (MDE) concentra-

tion (chemokinesis). In this case, we would consider D ≡ D(u, v,m), where m is

the MDE concentration. Considering such cases of nonlinear diffusion of the cancer

cells naturally leads to a finite wave speed of propagation19,32,33 (given initial data

with compact support).
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