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Abstract Tumour cell invasion is crucial for cancer metastasis, which is the
main cause of cancer mortality. An important group of proteins involved in
cancer invasion are the Heat Shock Proteins (HSPs). According to experi-
mental data, inhibition of one of these proteins, Hsp90, slows down cancer
cells while they are invading tissue, but does not affect the synthesis of ma-
trix metalloproteinases (MMP2 and MMP9), which are very important for
cancer metastasis, acting as extracellular matrix (ECM) degrading enzymes.
To test different biological hypotheses regarding how precisely Hsp90 influ-
ences tumour invasion, in this paper we use a model of solid tumour growth
which accounts for the interactions between Hsp90 dynamics and the mi-
gration of cancer cells and, alternatively, between Hsp90 dynamics and the
synthesis of matrix degrading enzymes (MDEs). The model consists of a
system of reaction-diffusion-taxis partial differential equations describing in-
teractions between cancer cells, MDE, and the host tissue (ECM). Using nu-
merical simulations we investigate the effects of the administration of Hsp90
inhibitors on the dynamics of tumour invasion. Alternative mechanisms of
reduction of cancer invasiveness result in different simulated patterns of the
invading tumour cells. Therefore, predictions of the model suggest experi-
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ments which might be performed to develop a deeper understanding of the
tumour invasion process.
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1 Introduction

Tissue invasion is one of the most important steps in cancer metastasis. How-
ever, the precise mechanisms of this process and all the regulatory pathways
governing the invasion are not yet completely understood. Developing ef-
fective therapeutic approaches to limit the formation of secondary tumours
requires not only the identification of matrix degrading enzymes necessary
for invasion, but also an understanding of the regulation of this process.

Tumour invasion consists of four main steps: cancer cell adhesion to the
extracellular matrix, secretion of the matrix degrading enzymes and extracel-
lular matrix degradation, the movement or migration of the cancer cells and
finally their proliferation. The movement of cancer cells through the tissue
involves several different mechanisms, including:

– chemotaxis, where a gradient of a diffusible chemical substance (chemoat-
tractant) can direct the migration of cancer cells to spatial regions of high
concentration of the chemoattractant;

– haptotaxis, where cells respond to gradients of non-diffusible chemicals
and migrate towards their higher concentrations, i.e. components of the
extracellular matrix such as fibronectin, vitronectin, laminin, collagen;

– convection, where cells are passively transported by a deforming substra-
tum;

– random motility or dispersal, where cells respond to local variations in the
cell density and tend to move down the density gradient in no preferred
direction [21].

All types of movement are conditioned by the motility of the cells (which de-
pends mainly on their ability to reorganise their cytoskeleton) and, to some
extent, by their ability to degrade the extracellular matrix. Active migration
of cancer cells through the extracellular matrix (ECM) is possible due to the
breakdown of ECM components. This process is catalyzed by numerous pro-
teolytic enzymes secreted by the invading cancer cells. Generally, the cancer
cells secrete the enzymes which may diffuse into the ECM and degrade one or
more of the ECM constitutive proteins e.g. collagen, fibronectin, vitronectin,
laminin. Through a combination of proliferation and migration the cancer
cells then invade and spread into the ECM. Most of these proteases belong
to two general classes: metalloproteases (MMPs) [24] and serine proteases,
such as urokinase plasminogen activators (uPAs) [3].

There is a growing evidence to suggest that Heat Shock Proteins (HSPs)
play an important role in cancer invasion. An elevated level of two such
proteins - Hsp70 and Hsp90 - has been reported in many tumours [16]. Up-
regulated expression of these proteins observed in tumours raises intriguing



Influence of Hsp90 on cancer invasion 3

questions as to whether the HSPs contribute to the process of tumourigenesis
and cancer cell proliferation [15].

Heat shock proteins are encoded by genes, whose expression is elevated
while the cells are subjected to stress conditions, such as heat shock, oxida-
tive stress, fever or inflammation the presence of alcohol, inhibitors of energy
metabolism, heavy metals [34]. Under stress conditions HSPs increase cell
survival, protecting and disaggregating stress-labile proteins [32], as well as
promoting the proteolysis of the damaged proteins [33]. Most of the heat
shock proteins can be referred to as “molecular chaperones” that assist the
correct non-covalent assembly of other polypeptide-containing structures but
which are not components of this assembled structure when they are perform-
ing their normal biological function. They bind to unfolded proteins as well
as to denaturated proteins promoting their proper folding or refolding or tar-
geting misfolde proteins towards degradation.

Under normal conditions, HSPs have multiple “housekeeping functions”
in cells. Their main function is folding new or distorted proteins into their
proper shape (which is essential for their activity and function). HSPs, amongst
them both alpha and beta isoforms of Hsp90, that make up to 3 % of the total
cell soluble proteins, are directly or indirectly involved in many important
processes such as protein and vesicular transport, cytoskeleton remodelling,
signal transduction, sorting proteins towards degradation and antigen pre-
sentation. Many of the important signalling cascades are dependent to some
extent on Hsp90 activity. Hsp90 also mediates the activity of transcription
factors, such as the p53 protein (well known as a tumour suppressor) or
HSF1 (heat-shock factor), a crucial element of the stress response pathway.
Hsp90 has also been described as a chaperone for the many proteins com-
monly linked to cancer progression, such as matrix degrading enzymes, a
very important group of proteases involved in the degradation of the ECM
(extracellular matrix).

Previously several studies have incorporated mathematical models for
cancer invasion and metastasis, for example, Refs. [1,2,5,7,8,12,22,23]. Many
of these papers examine the spread of cancer cells using systems of partial
differential equations where the cancer cell migration is governed by random
motility, i.e. diffusion, and the directed response of the cells to extracellu-
lar matrix (ECM) gradients, i.e. haptotaxis. The ECM gradients are created
when the ECM is degraded by the matrix degrading enzymes (MDEs) se-
creted by the cancer cells.

In contrast, the literature concerning the mathematical modelling of heat
shock proteins is rather limited. Previous mathematical models of heat shock
proteins include those of Peper et al. [25] and Rieger et al. [26,27]. All these
papers examine the changes in Hsp70 synthesis in response to external stimuli
such as heat. However, until now there are no mathematical models investi-
gating the impact of heat shock proteins on tumour invasion.

In this paper we extend a generic solid tumour invasion model to test dif-
ferent biological hypotheses on how Hsp90 influences tumour invasion, and
in particular, on the possible mechanisms of the reduction of invasiveness
due to the administration of Hsp90 inhibitors. Results of the simulations of
our models indicate possible directions of further experimental investigations.
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The mathematical model considered here involve solid tumour growth in its
initial, avascular stage, and is focused on the interactions between the cancer
cells and the surrounding tissue. Initially (see Sect. 2), we consider a mathe-
matical model consisting of three partial differential equations (PDEs), which
describes the evolution in time and space of the cancer cell density (denoted
by u), the extracellular matrix protein density (denoted by v) and the matrix
degrading enzyme concentration (denoted by m). Further on, (see Sect. 3) we
extend the generic model, focusing on the specific role of Hsp90. Using our
mathematical model, we consider two hypotheses that can explain the phe-
nomenon of attenuated invasiveness upon administration of Hsp90 inhibitors.
First, that Hsp90 influences the activation/production of enzymes degrading
the extracellular matrix (not necessarily MMP2), and second, that Hsp90
affects the cell cytoskeleton and increases a cell’s “flexibility” and, therefore,
its invasiveness. To validate our models we performed experiments examin-
ing the relationship between Hsp90 dynamics and malignant cell motility.
Outcomes of the in vitro experiments are presented in Section 4, while their
comparison to the predictions of our model are presented in the final section
(see Sect. 5).

2 The basic mathematical model

We now describe the way in which the cancer cell density u(x, t), the extra-
cellular matrix density v(x, t) and matrix degrading enzyme concentration
m(x, t) are involved in invasion. Subsequently, we present partial differential
equations of the spatio-temporal evolution of each variable.

(a) Cancer Cells:

The two key factors governing cancer cell migration during invasion are
random motion and haptotaxis (in response to gradients of fibronectin, vit-
ronectin and other ECM components). In addition to migration, the model
includes a term modelling cancer cell proliferation in the form of a logistic
growth law accounting for the competition for space.

The equation describing the dynamics of the cancer cells is given by:

∂u

∂t
= ∇ · (Du(u, v)∇u)︸ ︷︷ ︸

random motility

− ∇ · (χu(v)u∇v)︸ ︷︷ ︸
haptotaxis

+ F (u, v),︸ ︷︷ ︸
proliferation

(1)

where F (u, v) = µuu(1− u− v), and µu > 0.
In general, the random motility of the cancer cells may depend on the

density of the cancer cells themselves and the concentration of the ECM. In
such a case it should be modelled using a function Du(u, v) depending on the
variables u and v. However, for simplicity, in this model we do not consider
such a dependency. In our basic model (and later in our model with Hsp90
dependent MDE activation) Du(u, v) is taken to be a constant and equal to
Du.

In a similar manner to the cell random motility, the haptotaxis function
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may depend on the concentration of ECM (see, for example, [29]). However,
again, for simplicity, we omit this dependency and in our basic model (as
well as in our model with Hsp90 dependent MDE activation) we assume a
constant haptotaxis sensitivity function i.e. χu(v) = χu.

(b) Extracellular Matrix

It is known that ECM does not diffuse and, therefore, we omit any dif-
fusion term (or other “migration” terms). We model ECM degradation by
assuming that the MDEs degrade the ECM upon contact at some (degrada-
tion) rate δv. We assume that no remodelling of the ECM takes place. The
equation for ECM takes the form:

∂v

∂t
= − δvmv.︸ ︷︷ ︸

degradation

(2)

(c) Matrix Degrading Enzymes

The spatio-temporal evolution of the concentration of the MDE is as-
sumed to occur through diffusion, production which depends on interaction
between the cancer cells and the ECM and loss through simple degradation.
The equation for MDE concentration is therefore given by:

∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

− δmm︸︷︷︸
degradation

+ H(u, v).︸ ︷︷ ︸
production

(3)

Assuming that the MDE production is triggered by the contact between
cancer cells and ECM, we take H(u, v) = µmuv.
The equations are considered on some domain Ω ⊂ R2 with smooth boundary
∂Ω. Zero flux boundary conditions are imposed along with suitable initial
conditions to close the system.

2.1 Non-dimensionalization

We recast the problem in terms of dimensionless variables, rescaling distance
with the maximum distance that cancer cells may achieve at the early stage

of invasion, i.e. L = 0.1 cm and time with T = L2

D , where D represents a

reference diffusion coefficient of the enzyme ∼ 10−6 cm2s−1. Additionally,
we rescale densities of cancer cell, ECM and MDE with appropriate refer-
ence densities u0, v0 and m0, respectively. Following [13] we assume that the
reference densities have nanomolar values. The rescaled variables are:

t̃ :=
t

T
, x̃ :=

x

L
, ũ :=

u

u0
, ṽ :=

v

v0
, m̃ :=

m

m0
.

This introduces non-dimensional parameters

µ̃u = τµu, µ̃m = τµm, δ̃m = τδm, δ̃v = τm0v0δv,
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D̃u =
Du

D
, D̃m =

Dm

D
, χ̃u =

χu
D
.

After a subsequent nondimensionalization of the parameters in the functions
F , H, and dropping tildes for notational convenience, we obtain the nondi-
mensional system of equations,

∂u

∂t
= Du∆u− χu∇ · (u∇v) + µuu(1− u− v),

∂v

∂t
= −δvmv,

∂m

∂t
= Dm∆m− δmm+ µmuv.

(4)

2.2 Parameter estimation

Before we carry out computational simulations of our model with appropriate
initial conditions and zero flux boundary conditions, we need to estimate at
least those parameters which can be found elsewhere in the literature or on
the basis of performed experiments.

Estimation of the Diffusion Coefficients Du and Dm

As has been mentioned previously, we introduce D, a reference chemical
diffusion coefficient e.g. D ∼ 10−6cm2s−1 [4]. Estimates for the cell random
motility coefficient vary depending on the cell type: 3× 10−9cm2s−1 - 5.9×
10−11cm2s−1 for epidermal cells [28]; (7.1±2.7)×10−9cm2s−1 for endothelial
cells [31]. In light of these data, our choice for the cell random motility
coefficient Du will vary betweeen 10−9cm2s−1 and 10−11cm2s−1, and so our
nondimensional value will be between 10−3 − 10−5. Following Gerisch and
Chaplain [?] we assume an estimate for u0 = 6.7x107 cell cm−3.

Assuming that the diffusion coefficient of a diffusible chemical is in the
range 10−9-10−6cm2s−1 (see [6,28]) we obtain a dimensionless estimate of
Dm in the range 0.001 - 1. We leave the reference MDE concentration m0

unspecified due to difficulties in obtaining suitable experimental values (cf.
[?]).

The haptotactic coefficient χu

Stokes et al. [31] estimated the chemotactic sensitivity of ECs migrating in a
culture containing αFGF, to be 2600cm2s−1M−1 (see [31]). In the absence
of reliable empirical data, we chose the haptotaxis sensitivity χ to be in the
range of 2.5×10−3−2.5×10−1 cm2s−1M−1. Therefore, considering the fact
that the vitronectin blood plasma concentration is around 4µM [9], leads to a
dimensionless estimate of the haptotaxis coefficient χu in the range between
0.001 - 1. A value of v0 in the range 0.38 × 10−9M − 0.38 × 10−12M is
consistent with experimental measurements.
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Proliferation rate constant, µu

Using our in vitro experimental observations we can estimate the proliferation
rate (data not shown). On average one cell division takes between 8 and 12
hours. This gives the proliferation rate to be in the range of 0.058 and 0.087
h−1, and thus yields the value of the dimensionless parameter µu in the range
0.9 - 1.45.

Remaining Parameters

Not all parameters in the model could have been estimated. Therefore, we
chose these values in order to give the best qualitative results in the simu-
lations. For the extracellular matrix degradation rate we consider δv to vary
between 1 and 20, and for the decay of MDE we consider δm to vary between
10−1 and 10. Considering the MDE secretion from the cancer cells we chose
the nondimensional value of µm to vary between 0.01 - 5.

Parameter Description Value

Du cell diffusion coefficient 10−5 - 10−3

Dm MDE diffusion coefficient 10−3 - 10
χu haptotaxis coefficient 10−3 - 1
µu proliferation rate of cancer cells 0.9 - 1.45
µm production rate of MDEs 0.01 - 5
δv rate of degradation of ECM 1 - 20
δm decay of MDE 10−1 - 10

Table 1: The range of the estimated values of the model parameters.

2.3 Geometry of the problem

For simplicity we recast to one dimension: x ∈ [0, L], where x denotes the
distance from the centre of the tumour.

2.4 Boundary and initial conditions

Boundary conditions: Because our system refers to in vitro experimental
protocol, where invasion takes place within an isolated system, we assume
that there is no-flux of cancer cells and MDE across the boundary of the
domain.
Initial conditions: The initial distribution of the tumour cells, the extra-
cellular matrix density and MDEs concentration are prescribed as follows.
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Initially we assume that there is a cluster of cancer cells already present and
that they have penetrated a short distance into the extracellular matrix while
the remaining space is occupied by the matrix alone. Combining the above
results in the following initial conditions:

u(x, 0) = exp(
−x2

ε
), x ∈ [0, L] and ε > 0,

v(x, 0) = 1− exp(
−x2

ε
), x ∈ [0, L] and ε > 0,

m(x, 0) =
1

2
exp(

−x2

ε
), x ∈ [0, L] and ε > 0,

where ε = 0.01.

2.5 Travelling wave solutions

Given the structure of our partial differential equations (reaction-diffusion-
taxis), we now examine if the invasion of the tissue by the cancer cells may
be represented by travelling wave solutions of the model (4). System (4) has
three types of constant steady state solutions:

(0, 0, 0), (0, v∗, 0), (1, 0, 0).

Here v∗ is any positive constant and yields a continuum of steady-state
solutions. The first, trivial steady state is not relevant biologically. The second
steady state represents healthy tissue in the absence of any cancer cells. The
third solution describes the situation when there are only cancer cells. Since
we are modelling invasion of the cancer cells, we may expect a travelling wave
solution u(x, t) = U(x− ct) with positive speed c > 0, so that there we have
the healthy steady state ahead of the wave and the cancer-only one behind
the wave.

Thus, we solve this model on the infinite x domain x ∈ R with (u, v,m)
tending to (1, 0, 0) as x→ −∞ and (u, v,m) tending to (0, v∗, 0) as x→ +∞.
We look for solutions which have a constant shape and move in a space with
constant speed c, i.e.,

u(x, t) = U(z), v(x, t) = V (z), m(x, t) = M(z), (5)

with z = x − ct. Transforming system (4) into travelling wave coordinates
yields the system of five ordinary differential equations,

U ′ = Φ,

Φ′ = − c

Du
Φ +

χuδv
cDu

ΦMV +
χuδv
cDu

ΨUV +
χuδ

2
v

c2Du
UVM2 − µu

Du
U(1− U − V ),

V ′ =
δv
c
MV ,

M ′ = Ψ,

Ψ ′ = − c

Dm
Ψ +

δm
Dm

M − µm
Dm

UV,
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where Φ(z) = dU/dz and Ψ(z) = dM/dz and c is a the wave speed.
There exist three nonnegative steady states of this system, namely

(0, 0, 0, 0, 0), (0, 0, v∗, 0, 0), (1, 0, 0, 0, 0),

where (1, 0, 0, 0, 0) refers to the cancer-only steady state and (0, 0, v∗, 0, 0)
to the healthy steady state. For the solution connecting the cancer-only and
healthy steady states to exist, the state (1, 0, 0, 0, 0) must have at least a one-
dimensional unstable manifold and (0, 0, v∗, 0, 0) at least a one-dimensional
stable manifold. Indeed, linear stability analysis shows that the healthy steady
state is linearly unstable, while a cancer-only steady state has a two-dimen-
sional stable manifold.

These stability results suggest that we may expect travelling wave solu-
tions, where the cancer cells invade the healthy tissue, replacing it as they
invade. Since a five-dimensional phase space analysis does not provide a pro-
ductive way for seeking travelling wave solutions, we perform numerical study
to examine the wave character of the model solutions (see subsequent Sec-
tion).

A deeper qualitative understanding of the invading solutions is provided
by an analysis of reduced and simplified models. Assuming that matrix de-
grading enzyme has only a local influence on the tissue, i.e. Dm = 0, and
its dynamics is seen to be on a shorter time scale than the dynamics of the
cancer cells and ECM [17], leads to the reduction of model (4) to

∂u

∂t
= Du∆u− χu∇ · (u∇v) + µuu(1− u− v),

∂v

∂t
= − δvµm

δm
uv2.

(6)

A model of this type (but with a proliferation function u(1 − u) not de-
pending on the ECM concentration as we have here) was examined by several
authors [17–20]. Travelling wave solutions were observed in the case of pure
diffusion, pure haptotaxis and a combination of the two migration mecha-
nisms. It was shown that a pure diffusive migration yields smooth solutions
[19], while for pure haptotactic migration, the existence of discontinuous solu-
tions with shocks was also shown [17–19]. For the model with a combination
of diffusive and haptotactic migration, smooth solutions were found only nu-
merically [19]. It was shown that the minimum wave speed is proportional to
Du for pure diffusive migration and proportional to χu for pure haptotactic
migration [19]. For the model with diffusion and haptotaxis, the speed of the
travelling wave was investigated only numerically. Numerical studies revealed
that the minimum speed of the travelling wave is bounded by

max(K
√
χu, 2

√
Du) < cmin <

√
4Du +K2χu,

where K is some function of the parameters of the model kinetics.
To estimate the speed of the advancing front of our nonlinear model with

diffusion and haptotaxis, we simplify the model further in order to make
it amenable to mathematical analysis. Following [6], we assume a constant
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gradient of the extracellular matrix, i.e. ∂xv = κ. Under this assumption the
model reduces to a single Fisher-type equation describing the dynamics of
the cancer cells,

∂tu = Du∆u− κχu∂xu+ νuu(1− u), (7)

where νu is rescaled µu. For such a model one may estimate the speed of the
invading wave as:

κχu + 2
√
Duνu,

where κ is a parameter measuring the gradient of the tissue (see for exam-
ple [13] or [6]). These results, obtained for the reduced, simplified models,
indicate that any mechanism which interferes with and reduces either the
haptotaxis parameter χu or the random motility coefficient Du should slow
down the rate of invasion of the cancer cells. It gives an indication regarding
the relationship between the speed of the invasion of cancer cells and their
migration properties.

In the subsequent section we investigate the dynamics of the original
model (4) numerically. Our numerical studies show that, although the so-
lutions of the PDE system have much more complicated dynamics and the
profiles change in time, in a qualitative maner they reflect the main features
of the solutions obtained for the reduced models.

2.6 Simulation Results

In this section we present computational results obtained from numerical
simulations of system (4). The systems of equations considered here were
solved using the Method of Lines and Gear’s Method. The PDEs were dis-
cretized in space to give a system of ODEs [30]. The resulting system of
ODEs were then solved using Backward Differentiation Formulae e.g. the
Backward Euler Method (implicit, multi-step methods for stiff systems), and
implemented using the NAG Routine DO3PCF and also the MATLAB PDE
solver PDEPE.

The simulations show that the qualitative behaviour of solutions is sim-
ilar for the whole set of admissible parameters, i.e. parameters estimated in
subsection 2.2. Therefore, we present here results obtained for the particular
choice of parameters:

Du = 0.00035, Dm = 0.00491, χu = 0.0285,

µu = 1, µm = 0.5, δv = 8.15, δm = 0.5.

As can be seen from the plots in Fig. 1, the simulated solution of the ECM
concentration has the character of a travelling front moving to the right. The
solution of the evolution of the cancer cell density shows more complicated
dynamics. However, the leading edge of the tumour exhibits also a wave-like
behaviour, and an advancing front of cancer cells successfully invades the
ECM. The production and secretion of the MDEs is highly regulated. MDE
production is localised as is observed experimentally and clinically. MDEs
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Reference case: Cancer cells, ECM, MDE: t=6

Fig. 1 Plots at times t = 1, 2, 3, 4, 5, 6 showing the spatio-temporal evolution of
the density of cancer cells (blue) and the concentrations of ECM (red) and MDEs
(green). The figures show an invading advancing front of cancer cells producing
MDEs which, then, diffuse and degrade the matrix. The cancer cells migrate and
proliferate into the empty space of the degraded ECM. Simulations were performed
for the set of parametersDu = 0.00035, Dm = 0.00491, χu = 0.0285, µu = 1, µm =
0.5, δv = 8.15, δm = 0.5.

diffuse and degrade the ECM creating empty space into which the migrating
and proliferating cancer cells move. The simulations indicate that initially
haptotaxis leads to the formation of a sharp peak of cancer cell density on the
leading edge of the tumour. Later, proliferation starts to play an important
role leading to a maximum in cancer cell density in the centre of solid tumour
followed by a second local maximum on the edge of the tumour.
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Fig. 2 Plot of the time evolution of the pool of the Hsp90 unbound to the inhibitor
after its administration (active Hsp90).

3 Modelling the role of Hsp90

In this section we extend our model (4), to explore the impact of Hsp90 on
the invasiveness of the cancer cells. Using a baseline model and combining
modelling and simulation with experimental investigations, we check two
different hypotheses concerning the impact of Hsp90 on the invasiveness of
malignant cells:

(H1) Hsp90 regulates the activation (production) of enzymes degrading the
extracellular matrix (not necessarily MMP2) and, thus, reduced active
Hsp90 concentration leads to the impaired MDE activation;

(H2) Hsp90 affects the cytoskeleton, both in a direct and indirect way. Directly,
interacting with the major cytoskeletal proteins such as actin and tubulin
or indirectly via signalling pathways. It is widly known that there is a
whole variety of kinases involved in cell signaling amongst Hsp90 client
proteins. Influencing cytoskeleton Hsp90 incereases a cell’s “flexibility”
and, therefore, the decrease in active Hsp90 concentration leads to the
reduced cell migration.

We now modify system (4) to model the above two scenarios, and introduce
a time-dependent function of active Hsp90 concentration, denoted by h(t).
Upon inhibitor binding Hsp90 becomes inactive. We assume that the time
evolution of active Hsp90 concentration after admnistration of its inhibitors
is known, and given by the curve presented in Fig.2. This corresponds to
the experimental observations showing that, after the administration of the
inhibitors, active Hsp90 concentration decreases and then slowly rises again
to its physiological level. We do not consider the spatial distribution of Hsp90,
because the focus of the model is on the processes which are pressumably
regulated by Hsp90 inside the cell or on the cell membrane.

3.1 Model with Hsp90 dependent MDE activation

Hypothesis (H1) is based on reports which point to Hsp90 as a crucial fac-
tor in the activation of the matrix degrading enzyme MMP2 [10]. MMP2
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is one of the major proteins involved in ECM degradation. Eustace et al.
(2004) suggest that Hsp90 directly activates MMP2 and therefore promotes
the degradation of extracellular matrix by cancer cells. Active MMP2, se-
creted to the extracellular space, enables tumour invasion. In the case where
the concentration of active Hsp90 is not high enough, a cell loses its ability
to secrete enzymes that degrade components of the surrounding tissue and
therefore is not able to invade (or at least the invasion is significantly slowed
down). To model this hypothesis we modify our function H(u, v) = µmuv
and consider

H(u, v, h) = µmuvh, (8)

where h(t) denotes active Hsp90 concentration in time, given explicitly as the
function of time in Fig. 2. It reflects the assumption that the concentration
of Hsp90 is homogeneous in respect to space, i.e. the same in every cell, and
depends only on time.

3.1.1 Numerical results

In the first modification of model (4), as previously noted, we assume that
Hsp90 either directly activates or takes part in producing an active form
of MDEs. We assume that active Hsp90 concentration changes over time as
shown in Fig. 2. This leads to an insufficient amount of active Hsp90 in the
cancer cells and therefore to impaired/reduced MDE production.

Fig. 3 shows the results of the simulations of system (4) with H(u, v, h)
given by (8) and h given by the function depicted in Fig. 2. As can be seen
in Fig. 3, the first two plots, at time t = 1, 2, are similar to the first two plots
presented in Fig. 1. We observe an advancing front of cancer cells invading
the ECM. However, at later times the speed of invasion slows down due to the
reduced MDE production rate and at time t = 6 cancer cells have penetrated
less deeply into the ECM. In this case, the leading edge of the invading front
reaches a depth only of around 0.73, while in simulations of basic model (4)
it reaches a depth of around 0.86 (see Fig. 1).

3.2 Model with variable cell flexibility

Hypothesis (H2) assumes that Hsp90 is an important factor affecting key
biomechanical properties of the cell cytoskeleton, i.e. the cell’s “flexibility”.
In the case where there is a lack of active Hsp90, a cell loses the ability to
reorganise its cytoskeleton. This leads to an increase in cell cytoskeleton stiff-
ness, which, in turn, reduces cell random motility and haptotaxis. Therefore,
we assume that both the random motility coefficient Du and the haptotactic
coefficient χu are functions of Hsp90 concentration and have the following
form:

Du(h) = Du · I(h) and χu(h) = χu · I(h), (9)

where h(t) is a given time-dependent function of active Hsp90 concentration
(see Fig. 2), reflecting the administration of Hsp90 inhibitors. The function
I(h) describes functional relationship between Hsp90 concentration and the
flexibility of a cell.
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Reduced MDE production: Cancer cells, ECM, MDE: t=6

Fig. 3 Plots at times t = 1, 2, 3, 4, 5, 6 showing the spatio-temporal evolution of the
density of cancer cells (blue), the concentration of ECM (red) and MDEs (green)
under the assumption that MDE production rate depends linearly on active Hsp90
concentration (see Eq. 8). Simulations were performed for the parameters as in
Fig. 1 and time dependent active Hsp90 concentration h(t) as depicted in Fig. 2.

Since the process of reorganisation of the cytoskeleton involves a num-
ber of biochemical reactions, it is distributed in time. Therefore, it seems to
be more acurate to assume that the cell’s flexibility depends on some dis-
tributed time delay functional of Hsp90 concentration rather than on the its
concentration in a given time point.
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Fig. 4 Plots of the distributed delay kernels W (t− s) = e−(t−s) on the left hand-

side and W (t− s) = e−|t−s−τ | on the right hand-side.

In general, our distributed delay takes the following functional form:

I =

∫ t

−∞
W (t− s)h(s)ds, (10)

where W (t − s) is the distributed delay kernel, which is a representation of
the influence of active Hsp90 concentration in past on the cell’s flexibility at
the present time point. We consider two cases of the functional I(h) describ-
ing the distributed delay, and compare it with the local in time functional
I(h) = h.

Case 1:
W (s− t) = e−(s−t). (11)

This decaying exponential kernel gives weight to all past times, but most
weight to “recent” times. Differentiating (10) leads to the following ODE
governing the dynamics of I in time:

dI

dt
= −e−t

∫ t

−∞
esh(s)ds+ e−t[eth(t)], (12)

which is equivalent to
dI

dt
= −I + h(t). (13)

Using (13), we re-write system (4) as:

∂u

∂t
= Du∇ · (I∇u)− χu∇ · (Iu∇v) + µuu(1− u− v),

∂v

∂t
= −δvmv,

∂m

∂t
= Dm∆m− δmm+ µmu,

dI

dt
= −I + h(t).

(14)
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This is a non-autonomous system, since h(t) depends explicitly on time.

Case 2:

W (t− s) = e−|t−s−τ |. (15)

This distributed delay kernel gives most weight to events that happened τ
time units in the past, i.e. at time t− τ . Applying (15) to (10) results in

I = e−t
∫ t−τ

−∞
es+τh(s)ds+ et

∫ t

t−τ
e−s−τh(s)ds. (16)

Differentiating (16) leads, after subsequent calculations, to the integro-diffe-
rential equation describing the temporal dynamics of I:

dI

dt
= −e−t

∫ t−τ

−∞
es+τh(s)ds+ et

∫ t

t−τ
e−s−τh(s)ds+ e−τh(t).

Differentiating again yields the equation:

d2I

dt2
= I + e−τ

[
h(t) + h′(t)

]
− 2h(t− τ). (17)

Re-writing the above 2nd order ODE as a system of two 1st order ODEs
yields: 

dI

dt
= J,

dJ

dt
= I + e−τ

(
h(t) + h′(t)

)
− 2h(t− τ).

(18)

Again, applying (18) we can replace (4) by the following system of PDEs
with delay:

∂u

∂t
= Du∇ · (I∇u)− χu∇ · (Iu∇v) + µuu(1− u− v),

∂v

∂t
= −δvmv,

∂m

∂t
= Dm∆m− δmm+ µmu,

dI

dt
= J,

dJ

dt
= I + e−τ

(
h(t) + h′(t)

)
− 2h(t− τ).

(19)
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3.2.1 Simulation Results

We perform numerical simulations of system (4) with the diffusion and hap-
totaxis coefficients given by (9). We assume that the Hsp90 concentration
changes in time according to the curve depicted in Fig. 2. We consider dif-
ferent I(h) corresponding to three cases. In cases 1 and 2 we assume that

I =
∫ t
−∞W (t−s)h(s)ds (see Eq. (10)). In case 1, distributed delay kernel W

is given by (11) and in the case 2 distibuted delay is given by (15). In case 3
we assume that I is local in time and given by I(h) = h(t).

Simulations of model (4) under the assumption that a cell’s flexibility
changes according to Eq. (10), where distributed delay kernel is given by
(11) (case 1) are presented in Fig. 5, while the results for the distributed
delay kernel given by (15) (case 2) are presented in Fig. 6. Fig. 7 shows the
results of numerical simulations performed for I(h) = h(t) (case 3). Figs. 5
and 6 show a very similar advancing front of cancer cells invading the ECM.
We note that the speed of invasion slows down very significantly and at time
t = 6 the cancer cells have penetrated less deeply into the ECM than in the
basic model (4) with the constant diffusion and haptotaxis coefficients. The
leading edge of the invading front reaches a depth of around 0.55, which is
much smaller compared to a depth of penetration of around 0.86 in Fig. 1.
Small differences between Figs. 5 and 6 suggest that our system is insensitive
to the parameter τ .

In Fig. 7 the advancing front of cancer cells invading the ECM at time
t = 6 reaches a depth of around 0.61 compared with a depth of around
0.86 in Fig. 1. This is also less than the reduced penetration depth due
to lower MDE production shown in Fig. 3. This result may indicate that
impairing/reducing haptotaxis is a more effective way to stop cancer invasion
than impairing/reducing MDE production.

3.3 Comparison of the models

A comparison of all the results of the numerical simulations of our cancer
invasion model (4) and its modifications accounting for the possible interac-
tions between the active Hsp90 concentration in cells and MDE activation
and migratory properties of cancer cells is presented in Fig. 8. As mentioned
already, we observe significant differences between the speed of the leading
edge of the invading tumour in the basic model of the tumour invasion and
in the models with the motility coefficients dependent on the level of active
Hsp90 and, therefore, reduced after the administration of Hsp90 inhibitors.
Moreover, the behaviour of the model solutions does not depend significantly
on the particular choice of the functional I(h) describing the dependence
of diffusion and haptotaxis on the dynamics of active Hsp90. However, the
difference in the range of invasion between the model with the MDE activ-
ity depending on Hsp90 and the model with migratory properties controled
by Hsp90 dynamics is already significant. The dynamics of the model with
Hsp90 dependent MDE activity, (9), resembles more the dynamics of the
basic model. This observation suggests that reducing cell motility and hap-
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Fig. 5 Plots at times t = 1, 2, 3, 4, 5, 6 showing the spatio-temporal evolution of
the density of cancer cells (blue) and the concentrations of ECM (red) and MDEs
(green) under the assumption that a cell’s flexibility depends on active Hsp90 con-
centration (see Eq. 10), with a distributed delay kernel given by (11). Simulations
were performed for the parameters as in Fig. 1 and time dependent active Hsp90
concentration h(t) as depicted in Fig. 2.

totaxis might be a more effective way to slow down cancer invasion than
reducing MDE production.

Additionally, we observe different simulated patterns of the invading tu-
mour cells. Numerical solutions of the cell density of the basic model, as well
as the model with the Hsp90 dependent MDE activity, exhibit a sharp peak
on the edge of advancing front. In the numerical solutions of the model with
variable migration coeffcients, such a peak, although it initially also exists,
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Fig. 6 Plots at times t = 1, 2, 3, 4, 5, 6 showing the spatio-temporal evolution of
the density of cancer cells (blue) and the concentrations of ECM (red) and MDEs
(green) under the assumption that a cell’s flexibility depends on active Hsp90 con-
centration (see Eq. 10), with a distributed delay kernel given by 15. Simulations
were performed for the parameters as in Fig. 1 and time dependent active Hsp90
concentration h(t) as depicted in Fig. 2.

disappears by time t = 3, and the solution u becomes monotonically de-
creasing in space. These predictions of the model suggest that experiments
investigating the spatial pattern of the tumour cell density might allow one
to check which of the hypothetical scenarios of influence of Hsp90 on the cell
invasiveness is more plausible.
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Fig. 7 Plots at times t = 1, 2, 3, 4, 5, 6 showing the spatio-temporal evolution of
the density of cancer cells (blue) and the concentrations of ECM (red) and MDEs
(green) under the assumption that a cell’s flexibility depends on active Hsp90 con-
centration at the current point in time. Simulations were performed for the param-
eters as in Fig. 1 and time dependent active Hsp90 concentration h(t) as depicted
in Fig. 2.

4 In vitro experimental results

To check the hypotheses on the mechanisms of the Hsp90 influence on the
cancer invasiveness, we performed certain in vitro experiments. Our in vitro
results show no direct correlation between treatment with 17-(Allylamino)-
17-demethoxygeldanamycin and the secretion of active MMP2 and MMP9
gelatinases to the extracellular space (see Fig. 9 and its description for the
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Fig. 8 Plots showing the spatio-temporal evolution of the cancer cells and ECM
under the different scenarios considered: baseline (top); reduced MDE production
(second); reduced migration - case 1 (third); reduced migration - case 2 (fourth);
reduced migration - case 3 (bottom).
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technical details of the experiment). Zymographic analysis enables an esti-
mation of active MDE level secreted into the culture medium by the cells.
The activity of MMP2 and MMP9, two major MDEs, is compared in figure 9.
Activity has been measured in the control medium (lane1) and the medium
containing various concentrations of Hsp90 inhibitor (lanes 2 and 3). Our
results indicate that Hsp90 inhibition does not have any significant effect on
MDE activitity, however, these results not exclude the possibility that de-
creased activity of MDE contributes to the lower invasion rate. In order to
confirm this hypothesis and validate the mathematical model, further exper-
iments with specific siRNA knockdowns of MMP2, MMP9 and MT-MMP1
are being performed.

Hsp90 inhibitors significantly reduce cancer cell invasion in a Matrigel
assay (see Fig. 10 and its description for the technical details of the exper-
iment), and to a lesser extent, but still significantly reduce cell motility in
a scratch assay (see Fig. 11 and its description for the technical details of
the experiment). The Matrigel assay simulates in vivo conditions - cells have
to migrate through Matrigel (i.e. ECM isolated from mice) towards higher
concentration of the serum. If the cell motility or ECM degrading enzymes
activity is impaired, fewer cells migrate to the membrane below the Matrigel
layer in a given time. It is a standard method of assaying cell invasion. The
Scratch assay is an experimental procedure that enables one to estimate the
migration speed of cells. Cells are removed from a part of the culture plate,
and the time taken to overgrow the gap is measured. This experiment is per-
formed on plastic plates, and the cells migrate on the plastic instead of ECM.
In this experimental system the process of migration is independent of any
particular MDE. The results strongly support the hypothesis that the MDE
activity is not the only factor that influences cell migration. Collectively these
data suggest that the role of Hsp90 in cancer cell invasion is linked to the
mediation of the cell motility rather than control of MDE activation and
secretion. Since Hsp90 has been reported to interact with components of the
cell cytoskeleton, decreased invasion upon geldanamycin treatment might be
linked to the cytoskeletal changes.

These results, supported by preliminary in vitro experiments on cancer
cells strongly suggest that detailed studies on the role and involvement of
Hsp90 in cell motility should be performed.

5 Discussion

In this paper we have presented different versions of a mathematical model
of cancer cell invasion of tissue. Our models differ from previous models of
cancer cell invasion in that they include for the first time the effects of heat
shock proteins. We checked a number of hypotheses concerning the impact
of Hsp90 on the invasiveness of malignant cells and performed new exper-
iments examining the relationship between Hsp90 dynamics and malignant
cell motility.

Our basic mathematical model consists of a system of three coupled
nonlinear reaction-diffusion-taxis partial differential equations describing the
spatio-temporal evolution of the cancer cell density, the ECM concentration
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Fig. 9 Zymographic analysis of conditioned cell culture media of MDA-MB 231
breast cancer cells. Cell were grown on IMDM medium with 10% FBS. At the 80%
of confluence medium was replaced with serum-free medium supplemented with (1)
DMSO - control (2) 0.5 µM 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin)
and (3) 1.0 µM 17-AAG. Serum is removed prior to the experiment as it contains
MDE and might influence the final result. Upon 24h media were collected and
subjected to the zymographic analysis on 10% poliacrylamide gel with 0.1 gelatin.

Fig. 10 Relative invasion rate of MDA-MB 231 breast cancer cells in Matrigel
assay. In each experiment 25000 cells were plated in upper chamber of Tran-
swell (Costar) insert over the Matrigel layer. Cells suspended in serum free IMDM
medium were treated with various concentrations of Hsp90 inhibitors. The lower
chamber was filled with IMDM medium with 10% FBS. Aftee 24h of incubation
cells bound to the lower surface of the membrane were counted. Relative invasion
rate has been assessed (as compared to the control cells).
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Fig. 11 Migration of MDA-MB 231 breast cancer cells in scratch assay. Cells were
grown on IMDM medium with 10% FBS in 24-well plates. At the 80% of conflu-
ence medium was replaced with serum-free medium supplemented with (1)DMSO
- control or 0,1 µM 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin). Cells
were scratched with a pipette tip. Area of scratch has been measured at timepoints
of 0h and 24h (A) in triplicate. Relative migration speed - average rate between
scratch areas at t24 and t0 has been assessed (B).

and the MDE concentration. Computational simulations of our basic model
reveal advancing fronts of cancer cells invading the ECM through prolifera-
tion and migration driven by random motility and haptotaxis. Degradation
of the ECM is achieved by a controlled production and secretion of MDEs.

To test different hypotheses on how the dynamics of Hsp90 influences tu-
mour invasion, we modified the basic model and included possible interactions
between Hsp90, the rate of MDE production and the migratory properties of
the cancer cells. We considered two different mechanisms: (i) the impact of
Hsp90 on the MDE production, whereby reduced levels of active Hsp90 led
to a reduced MDE production rate; (ii) the influence on cell biomechanical
properties and hence cell migration, whereby reduced levels of active Hsp90
led to a lower value of the haptotaxis coefficient.

In both cases, inhibition of Hsp90 led to a decrease of the speed of the
invasive wave of cancer cells and also to a smaller depth of penetration of the
ECM by the cancer cells. Although both mechanisms had similar qualitative
effects, our simulations indicated that the reduction in diffusion and hapto-
taxis had a greater effect on reducing invasion than the reduction of the MDE
production rate. Additionally, alternative mechanisms of reduction of inva-
siveness result in different simulated patterns of the invading tumour cells.
Therefore, the predictions of the model suggest experiments which might be
performed to check, which of the hypothetical scenarios of interaction is more
plausible.

The models were built in a close connection to experimental data. The
paradigm was to use the experimental data to build models, and to use the
modelling to plan further experiments, rather than explain what is known
already. To validate the models, in vitro experiments were performed. Our
experimental results indicate that inhibition of Hsp90 reduces cell invasive-
ness, although, contratry to the hypothesis postulated in [10], it does not
affect directly the synthesis of metalloproteases (MMP2). The experiments
suggest that the role of Hsp90 in cancer cell invasion is connected with the
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mediation of the cell motility rather than the regulation of MDE activation
and secretion.

The results of mathematical modelling and simulations, supported by
preliminary in vitro experiments on cancer cells strongly suggest that de-
tailed studies on Hsp90 impact on cells motility should be performed, both
experimentally and theoretically using methods of mathematical modelling,
analysis and simulations. Signalling pathways are important targets for clin-
ical and therapeutic intervention. Therefore, accurate quantitative and pre-
dictive mathematical models of cell transformation and cancer invasion are
important for control of tumour growth. Future work will consider making
the haptotaxis function depend on key intracellular variables such as HSP
concentration. This means adopting a systems biology approach to cancer
invasion modelling.
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